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Graph-Theoretic Approaches to
Minimally-Supervised Natural Language Learning”

Mamoru Komachi

Abstract

Bootstrapping is a minimally supervised machine learning algorithm used
in natural language processing (NLP) to reduce the cost of human annotation.
It starts from a small set of seed instances (e.g., (cat, animal) for learning is-a
relation) to extract context patterns (e.g., “X such as Y”) from a corpus. The
extracted patterns are used to extract other target instances which co-occur
with the patterns, and the extracted instances are then used for inducing other
context patterns. By applying these steps iteratively, one can easily multiply
the number of seed instances with minimal human annotation cost. The idea
of bootstrapping has been adopted to many NLP tasks such as relation extrac-
tion and named entity recognition. However, bootstrapping has a tendency,
called semantic drift, to select instances unrelated to the seed instances as the
iteration proceeds.

The main contribution of this thesis is to demonstrate the semantic drift of
bootstrapping has the same root as the topic drift of Kleinberg’s HITS, using
a simplified graph-based reformulation of bootstrapping. We confirm that
two graph-based algorithms, the von Neumann kernels and the regularized
Laplacian, can reduce semantic drift in various natural language processing
tasks. Proposed algorithms achieve superior performance to Espresso, even
though the proposed algorithms have less parameters than Espresso and are
easy to calibrate.

In this thesis, we first overview bootstrapping algorithms including state-
of-the-art bootstrapping algorithm called Espresso with experimental results.
We show that Espresso outperforms previous bootstrapping methods, and ap-
ply three modifications to the Espresso algorithm to induce a new Espresso-
style algorithm called Tchai. Then we present a graph-based analysis of
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Espresso-style bootstrapping algorithms to show the parallel between topic
drift and semantic drift, and propose two graph-based algorithms. Finally, we
apply the proposed algorithms to three NLP tasks: word sense disambigua-
tion, bilingual dictionary construction and semantic category acquisition. Ex-
perimental results show that the regularized Laplacian, one of the proposed
algorithms, is comparable to Espresso, yet the former is easy to calibrate and
scalable to large scale data.

Keywords:

natural language processing, bootstrapping, link analysis, semi-supervised
learning
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Introduction

In recent years machine learning techniques have become widely used in nat-
ural language processing (NLP). These techniques offer various ways to ex-
ploit large corpora and are known to perform well in many tasks. However,
these techniques often require tagged corpora, which are not readily available
to many languages. Reducing the cost of human annotation is one of the im-
portant factors for building NLP systems. Consequently, extraction of lexical
knowledge from a large collection of text data with minimal supervision has
been an active area of research recently.

To mitigate the problem of hand-tagging resources, semi(or minimally)-
supervised and unsupervised techniques have been actively studied. Auto-
matic extraction of relations by exploiting recurring patterns in text was pi-
oneered by Hearst (1992)[23], who describes a bootstrapping procedure for
extracting words in the hyponym (is-a) relation, starting with three manually
given lexico-syntactic patterns. Bootstrapping algorithms can easily multi-
ply the number of tagged instances with minimal human annotation cost, by
iteratively applying pattern extraction and instance extraction.

This idea of learning with a minimally supervised bootstrapping method
was subsequently adopted for many tasks, including word sense disambigua-
tion [61], relation extraction [9, 47, 42] and named entity recognition [14, 20].

However, it is known that bootstrapping often acquires instances not re-
lated to seed instances. For example, consider the task of collecting the names
of common tourist sites from web corpora. Given words like “Geneva” and
“Bali” as seed instances, bootstrapping would eventually learn generic pat-
terns such as “pictures” and “photos,” which also co-occur with many other
unrelated instances. The subsequent iterations would likely acquire frequent
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CHAPTER 1. INTRODUCTION

Input (Extracted from corpus) Output
Singapore visa Hong Kong

Singapore’visa  Australia
. /Siﬁg/apore map

Hong Kong __history , China

Egypt
Alternate step by step

Figure 1.1. Corpus-based extraction of semantic knowledge

words that co-occur with these generic patterns, such as “Britney Spears.”
This phenomenon is called semantic drift [16].

A straightforward approach to avoid semantic drift is to terminate itera-
tions before hitting generic patterns, but the optimal number of iterations is
task-dependent and is hard to come by. The state-of-the-art bootstrapping
algorithm Espresso [42] incorporates sophisticated scoring functions to cope
with generic patterns, but Espresso still shows semantic drift unless iterations
are terminated appropriately.

Previously proposed bootstrapping algorithms differ in how they deal
with the problem of semantic drift. Also, there is an issue of generic pat-
terns which deteriorates the quality of acquired instances. We will take the
Espresso algorithm [42] as the example to explain common configuration for
bootstrapping.

Another major drawback of bootstrapping is the lack of principled method
for selecting optimal parameter values [36, 5]. It makes it hard to apply boot-
strapping algorithms in practical settings.

In this work, we present a graph-theoretic analysis of Espresso-like boot-
strapping algorithms. We argue that semantic drift is inherent in these algo-

2



Input (Extracted from corpus) Output

Singapore visa Australia

_e” card

-

»“  Semantic category changed!

-
-

card greeting ___ messages

-
—~
~
-

22 words

-
-

Errors propagate to successive iteration

Figure 1.2. Semantic drift is the central problem of bootstrapping

rithms, and propose to use two graph-based algorithms that are theoretically
less prone to semantic drift, as an alternative to bootstrapping.

The rest of this thesis is organized as follows. We overview the common
setting of bootstrapping algorithms and compare various kinds of bootstrap-
ping algorithms in Chapter 2. We will describe the Espresso algorithm in
Chapter 3. We conducted an experiment to compare Espresso algorithm with
other bootstrapping algorithms. In Chapter 4, we present a simplified version
of Espresso to show the root of semantic drift, and apply two graph-based
algorithms used in link analysis community to compute relatedness between
instances. We then evaluate the algorithms in three NLP tasks: the results are
reported in Chapters 5, 6 and 7.






Overview of Bootstrapping Algorithms

Bootstrapping (or self-training) is a general framework for reducing the re-
quirement of manual annotation. The idea of learning with a bootstrapping
method was adopted for many tasks. The goal of these algorithms is to learn
target instances, which are the words belonging to certain categories (e.g., cat
for the Animal class), or in the case of relation extraction, the pairs of words
standing in a particular relationship (e.g., pasta::food for is-a relationship),
given the context patterns for the categories or relation types found in source
data. We will first describe the common setting of bootstrapping algorithms,
and then explain the difference of various kinds of bootstrapping algorithms.

The first step toward the acquisition of instances is to extract context pat-
terns. In previous work, these are surface text patterns, e.g., X such as Y, for
extracting words in an is-a relation. The extracted context patterns must then
be assigned a score reflecting their usefulness in extracting the instances of
a desired type. Frequency is a poor metric here, because frequent patterns
may be extremely generic, appearing across multiple categories. Previously
proposed methods differ in how to assign the desirability scores to the pat-
terns they find and in using the score to extract instances, as well as in the
treatment of generic patterns, whose precision is low but whose recall is high.

Espresso and other bootstrapping methods [61, 1, 42, 16] alternate two
phases: pattern extraction and instance extraction. For example, suppose we
would like to learn hyponym (X is-a Y) relations. In pattern extraction phase,
patterns like “Y such as X” which co-occur frequently with a seed such as
(cat, animal) will be selected from a corpus. In instance extraction phase, on
the other hand, new instances like (sparrow, bird) which co-occur with the
patterns will be acquired and used for the next iteration.

5



CHAPTER 2. OVERVIEW OF BOOTSTRAPPING ALGORITHMS

Instances Corpus Patterns
(things to extract) (templates to extract instances)
iPhone g Buy iPhone at Apple Store

iPod touch Buy iPod touch at Apple Store Buy # at Apple Store
#: slot for instance

MacBook Air +— Buy MacBook Air at Apple Store

Figure 2.1. Two phases of bootstrapping: pattern and instance extraction.

We describe these phases below, along with the parameters that control
each phase.

Phase 1. Pattern Extraction Induce patterns from a corpus given seed in-
stances. Patterns may be surface text patterns, lexico-syntactic patterns, and /or
just features. Confidence score is assigned to each pattern depending on co-
occurrence strength to seed instances. Only top highest k patterns are selected
(We call this process pattern extraction). It is necessary to assign low scores to
generic patterns and high scores to patterns with high relatedness to the seed
instances.

Phase 2. Instance Extraction Enumerate instances that co-occur with the
patterns extracted in the pattern extraction phase. Compute confidence scores
of enumerated instances and select high-confidence instances to add to the
seed instance set. This process is called instance extraction. It is desirable to
keep only high-confidence instances at this phase, as they are used as seed
instances for the next iteration. Bootstrapping algorithms differ in the way
to achieve this goal, i.e. whether (a) to output learned instances as acquired
instances on each iteration to retain highly relevant instances learned in early
iterations or (b) to output high-confidence instances on the last iteration in-
stead of learning instances on each round.

Bootstrapping algorithms have parameters (i) pattern reliability scoring met-
rics and (ii) the number of patterns to use for extraction of instances for pattern

6



extraction phase; and (iii) instance reliability scoring metrics, (iv) the number of
instances to pass to the next iteration. Also (v) stopping criterion is another pa-
rameter to control when to stop iterations.

Bootstrapping iterates the above two phases several times until stopping
criteria are met. Acquired instances tend to become noisy as the iteration
proceeds, so it is important to terminate before semantic drift occurs.

One of the major deficiencies in bootstrapping algorithms is that there
is no principled manner to select optimal parameters and configurations [36].
How to cope with the problem of semantic drift differs from methods to meth-
ods, and it depends on tasks and domains.

2.1. Hearst (1992) Algorithm

Hearst (1992) [23] described a bootstrapping procedure for extracting words
in hyponym (X is-a Y) relation, starting with manually given lexico-syntactic
patterns. For example, a pattern “Y such as X” as in “... works by such
authors as Herrick, Goldsmith, and Shakespeare.” indicates that “Herick,”
“Goldsmith” and “Shakespeare” are hyponyms of “author.” She then uses
these terms to find new patters like “Y including X” as in “All common-law
countries, including Canada and England ...” and repeats the process.

2.2. Yarowsky (1995) Algorithm

Yarowsky (1995) [61] presented an unsupervised word sense disambiguation
(WSD) system which rivals supervised techniques. He exploits the “one sense
per collocation” and “one sense per discourse” properties of natural language
and incrementally learns a decision list with a few seed instances. His al-
gorithm augments sense tagged data by iteratively training an intermediate
classifier on classified data, using the resulting classifier to classify unlabeled
data, and keeping the most confidently tagged instances for classified data to
use on next iteration.

Although Yarowsky’s original paper lacks theoretical justification of his
algorithm, Abney [1] presented a thorough discussion on the Yarowsky al-
gorithm. He extended the original Yarowsky algorithm to a new family of
bootstrapping algorithms that are mathematically well understood.

7



CHAPTER 2. OVERVIEW OF BOOTSTRAPPING ALGORITHMS

2.3. Collins and Singer (1999) Algorithm

Collins and Singer (1999) [14] presented a new algorithm which combines
Yarowsky’s algorithm and co-training [8]. They induced a decision list for
named entity classification starting from a few seed instances, by iteratively
learning a spelling decision list and a decision list of contextual rules. They
also presented a more general framework than the decision-list learning algo-
rithm.

2.4. The Basilisk Algorithm (Thelen and Riloff 2002)

Thelen and Riloff (2002) [56] presented a framework called Basilisk, which
extracts semantic lexicons for multiple categories. It starts with a small set of
seed words and finds all patterns that match these seed words in the corpus.
The bootstrapping process begins by selecting a subset of the patterns by the
Rlog F metric [46]:

Rlog F(pattern;) = % log, (F;) (2.1)
1

where F; is the number of category members extracted by pattern; and N; is
the total number of instances extracted by pattern;. It then identifies instances
by these patterns and scores each instance by the following formula:

Z;L 1082(131' +1)

p;
where P; is the number of patterns that extract word;. They used the aver-
age logarithm to select instances to balance the recall and precision of generic
patterns. They added five best instances to the lexicon according to this for-
mula, and the bootstrapping process starts again. Instances are cumulatively
collected across iterations, while patterns are discarded at the end of each
iteration.

AvgLog(word;) = (2.2)

2.5. Bilingual Bootstrapping (Li and Li 2004)

Li and Li (2004) [31] proposed a method called Bilingual Bootstrapping. It
makes use of a translation dictionary and a comparable corpus to help dis-
ambiguate word senses in the source language, by exploiting the asymmetric
many-to-many sense mapping relationship between words in two languages.
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2.6. Mutual Exclusion Bootstrapping (Curran et al.
2007)

Curran et al. (2007) [16] presented an algorithm called Mutual Exclusion Boot-
strapping, which minimizes semantic drift using mutual exclusion between
semantic classes of learned instances. They prepared a list of so-called stop
classes similar to a stop word list used in information retrieval to help bound
the semantic classes. Stop classes are sets of terms known to cause semantic
drift in particular semantic classes. However, stop classes vary from task to
task and domain to domain, and human intervention is essential to create an
effective list of stop classes.

2.7. Sekine and Suzuki (2007) Algorithm

For the purpose of choosing the set of context patterns that best character-
izes the categories, Sekine and Suzuki (2007) [51] reported that none of the
conventional co-occurrence metrics such as tf.idf, mutual information and chi-
squared tests achieved good results on their task, and proposed a new mea-
sure, which is based on the number of different instances of the category a
context ¢ co-occurs with, normalized by its token frequency for all categories:

Score(c) = fiypelog, g(TC) (2.3)

glc) = ftype(c) / Finst(c) (2.4)
frype(ctop1000)

¢ Fiyst(ctop1000) (2.5)

where fie is the type frequency of instance terms that ¢ co-occurs with in
the category, F,s is the token frequency of context ¢ in the entire data and
ctop1000 is the 1000 most frequent contexts. Since they started with a large
and reliable named entity dictionary, and therefore used several hundred seed
terms, they simply took the top-k highest-scoring contexts and extracted new
named entities once and for all, without iteration. Generic patterns receive
low scores, and are therefore ignored by this algorithm.






Espresso-style Bootstrapping Algorithms

In this chapter, we propose a new bootstrapping algorithm, called Tchai. We
tirst discuss the Espresso framework [42] in some detail because Tchai is based
on it. It is a general-purpose, minimally supervised bootstrapping algorithm
that takes a few seed instances as input and iteratively learns surface pat-
terns to extract more instances. The key to Espresso lies in its use of generic
patterns: it assumes that correct instances captured by a generic pattern will
also be instantiated by some reliable patterns, which mean high precision
and low recall patterns. We then explain three modifications to the Espresso
algorithm to further improve precision. We name the new Espresso-style
algorithm Tchai. We experimentally show that the Espresso algorithm out-
performs a bootstrapping algorithm called Basilisk described in the previous
chapter. Thanks to the performance improvements from the modifications,
the Tchai algorithm is more scalable than the Espresso algorithm. The Tchai
algorithm achieves constantly higher precision than the Espresso algorithm,
while keeping comparable recall.

3.1. The Espresso Algorithm

Pantel and Pennacchiotti [42] proposed a bootstrapping algorithm called Espresso
to learn binary semantic relations such as is-a and part-of from a corpus. What
distinguishes Espresso from other bootstrapping algorithms is that it benefits
from generic patterns by using a principled measure of instance and pattern
reliability. Previous methods use several tens of reliable patterns for instance
extraction, excluding generic patterns to prevent semantic drift. However,

11



CHAPTER 3. ESPRESSO-STYLE BOOTSTRAPPING ALGORITHMS

filtering generic patterns may harm coverage of the instance extraction and
result in dropping recall. Espresso, on the other hand, defines sophisticated
scoring functions to reduce the effect of semantic drift and compute a relia-
bility score of an instance from all the patterns with small weight. This proce-
dure improves recall and drastically increases the number of overall acquired
instances.

Espresso starts from a small set of seed instances of a binary relation,
finds a set of surface patterns P, selects the top-k patterns, extracts the highest
scoring m instances, and repeats the process. Espresso ranks all patterns
in P according to reliability r,, and retains the top-k patterns for instance
extraction. The value of k is increased by one after each iteration.

The key idea of Espresso is recursive definition of pattern-instance scoring
metrics. They use pointwise mutual information (pmi) and define the relia-
bility of a pattern p as its average strength of association across each input
instance i in the set of instances I, weighted by the reliability of each instance
i. The reliability scores of pattern p and instance i, denoted respectively as
rz(p) and r,(i), are given as follows:

_ et s o)y (i)

pmi(i,p) .

where P and I are sets of patterns and instances, and |P| and |I| are the
numbers of patterns and instances, respectively. The pmi between instance
i = {x,y} and pattern p is estimated by:

x/ 7
pmi(i, p) = log P %Yl (3.3)

where |x, p,y| is the frequency of pattern p instantiated with terms x and y
(recall that Espresso is targeted at extracting binary relations) and where the
asterisk represents a wildcard. They multiplied pmi(i, p) with the discount-
ing factor suggested in [43] to alleviate a bias towards infrequent events. In
addition, max pmi is a maximum value of the pointwise mutual information
over all instances and patterns.

The intuition behind these definitions is that a reliable pattern co-occurs
with many reliable instances, and a reliable instance co-occurs with many
reliable patterns.
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Espresso uses Equations (3.1) for a pattern scoring function and (3.2) for an
instance scoring function, respectively (see Chapter 2 for the meaning of these
parameters), whereas other parameters rely on the tasks and need calibration.
Unlike other bootstrapping algorithms, Espresso not only uses top-k ranked
instances and patterns, but also all the instances and patterns with their confi-
dence scores as weights, and thus it drastically improves recall while keeping
precision high.

3.2. The Tchai Algorithm

In this section, we describe the modifications we made to Espresso to de-
rive a new Espresso-style algorithm called Tchai, dedicated to learn semantic
categories from web search query logs.

3.2.1 Segmentation of Query Logs

Bootstrapping methods often use some heuristics for finding the pattern bound-
aries in text. As we use query logs as the source of knowledge, we simply use
everything but the instance string in a query as the pattern for the instance,
in a manner similar to [41]. For example, the seed word JAL in the query
“JAL+flight_schedule” yields the pattern “#+flight_schedule” ! Note that we
perform no word segmentation or boundary detection heuristics in identify-
ing these patterns, which makes our approach fast and robust, as the segmen-
tation errors introduce noise in extracted patterns, especially when the source
data contains many out of vocabulary items.

3.2.2 Filtering Ambiguous Instances and Patterns

As mentioned above, the treatment of high-recall, low-precision generic pat-
terns (e.g., #+map, #+animation) present a challenge to minimally supervised
learning algorithms due to their ambiguity. In the case of semantic category
acquisition, the problem of ambiguity is exacerbated, because not only the ac-
quired patterns, but also the instances can be highly ambiguous. For example,
once we learn an ambiguous instance such as Pokemon, it will start collecting

14 indicates where the instance occurs in the query string, and + indicates a white space in
the original Japanese query. The underscore symbol (_) means there was originally no white
space; it is used merely to make the translation in English more readable.

13



CHAPTER 3. ESPRESSO-STYLE BOOTSTRAPPING ALGORITHMS

patterns for multiple categories (e.g., Game, Animation and Movie), which is
not desirable.

In order to control the negative effect of the generic patterns, Espresso
introduces a confidence metric, which is similar to but different from the reli-
ability score, and uses it to filter out the generic patterns falling below a con-
tidence threshold. In our experiments, however, this metric did not produce a
score that was substantially different from the reliability score. Therefore, we
did not use a confidence metric, and instead opted for not filtering ambigu-
ous instances and patterns, where we define ambiguous instance as one that
induces more than 1.5 times the number of patterns of previously accepted re-
liable instances, and ambiguous (or generic) pattern as one that extracts more
than twice the number of instances of previously accepted reliable patterns.
As we will see in Section 3.3.5, this modification improves the precision of the
extracted instances, especially in the early stages of iteration.

3.2.3 Scaling Factor in Reliability Scores

We made another modification to the Espresso algorithm to reduce the power
of generic patterns. Espresso normalizes max pmi in terms of either instances
or patterns instead of all instances and patterns as follows.

. Lpep mf;1 Zilp)_mi”ﬂ(P)
r(i) = ”’;‘ P (3.4)
Vet matb)or, (i)
re(p) = |II| p (3.5)

Since pmi ranges [—oo, +-00], the point of dividing pmi(i, p) by max pmi in
Espresso is to normalize the reliability to [—1, 1]. However, using pmi directly
to estimate the reliability of a pattern when calculating the reliability of an
instance may lead to unexpected results because the absolute value of pmi is
highly variable across instances and patterns. We define the local max pmi
of the reliability of an instance to be the absolute value of the maximum pmi
for a given instance, as opposed to taking the maximum for all instances in a
given iteration. Local max pmi of the reliability of a pattern is defined in the
same way.

This modification to Tchai increases the reliability of middle-frequent in-
stances and patterns from Espresso. Typical bootstrapping algorithms use
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only few patterns on each iteration, and thus ambiguous patterns affect preci-
sion especially in the early stages. Therefore, it is preferable to learn middle-
frequent instances rather than infrequent but specific instances in order to find
patterns related to the target category (these patterns cover middle frequent
instances similar to the seed instances). As we will see in the next section, this
modification has a large impact on the effectiveness of our algorithm.

Here, we modify Equation (3.3) to deal with unary pattern instead of bi-
nary relation. Thus,

s i
pmi(i, p) = log, #ﬁlﬂ (3.6)

is pointwise mutual information between i and p?, |i,*| and |*, p| are the
frequencies of pattern p and instance i in a given corpus, respectively, and
i, p| is the frequency of pattern p which co-occurs with instance i.

3.2.4 Performance Improvements

Tchai, unlike Espresso, does not perform the pattern induction step between
iterations; rather, it simply recomputes the reliability of the patterns induced
at the beginning. Our assumption is that fairly reliable patterns will occur
with at least one of the seed instances if they occur frequently enough in query
logs. Since pattern induction is computationally expensive, this modification
reduces the computation time by a factor of 400.

3.3. Experiment

In this section, we present an empirical comparison of Tchai with other sys-
tems such as Espresso and Basilisk [56]. These algorithms are summarized in
Table 3.1.

2Although pointwise mutual information is usually defined as log, %, Pantel and
Pennacchiotti [42] have to approximate it using above equation because the true corpus size
is not known (they used search engine hit counts from Google). However, we computed
pointwise mutual information as usual, because we were able to estimate our corpus size

correctly.

15



CHAPTER 3. ESPRESSO-STYLE BOOTSTRAPPING ALGORITHMS

3.3.1 Introduction

Our method is based on the Espresso algorithm [42] for extracting binary
lexical relations, improving it to work well on learning unary relations from
query logs. The use of query data as a source of knowledge extraction offers
some unique advantages over using regular text.

e Web search queries capture the interest of search users directly, while
the distribution of the Web documents do not necessarily reflect the
distribution of what people search [52]. The word categories acquired
from query logs are thus expected to be more useful for the tasks related
to search.

e Though user-generated queries are often very short, the words that ap-
pear in queries are generally highly relevant for the purpose of word
classification.

e Many search queries consist of keywords, which means that the queries
include word segmentation specified by users. This is a great source
of knowledge for learning word boundaries for those languages whose
regularly written text does not indicate word boundaries, such as Chi-
nese and Japanese.

Although our work naturally fits into the larger goal of building knowl-
edge bases automatically from text, to our knowledge we are the first to ex-
plore the use of Japanese query logs for the purpose of minimally supervised
semantic category acquisition. Our work is similar to [51], whose goal is to
augment a manually created dictionary of named entities by finding contex-
tual patterns from English query logs. Our work is different in that it does not
require a full-scale list of categorized named entities but a small number of
seed words, and iterates over the data to extract more patterns and instances.
Recent work by [38, 39] also uses English query logs to extract lexical knowl-
edge, but their focus is on learning attributes for named entities, a different
focus from ours.

3.3.2 Experimental Setup

Query logs: The data source for instance extraction is an anonymized col-
lection of query logs submitted to Live Search from January to February 2007,
taking the top 1 million unique queries. Queries with garbage characters are
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Table 3.1. Algorithms for relation extraction

# of seeds target corpus language
Sekine & Suzuki up to 600 categorized NE query log English
Basilisk 10 semantic lexicon MUC-4 [54] English
Espresso up to 10  semantic relation TREC-9 [58] English
Tchai 5 semantic categories query log Japanese

removed. Almost all queries are in Japanese, and are accompanied by their
frequency within the logs.

Target categories: Our task is to learn word categories that closely reflect
the interest of web search users. We believe that a useful categorization of
words is task-specific, therefore we did not start with any externally available
ontology, but chose to start with a small number of seed words. For our
task, we were given a list of 23 categories relevant for web search, with a
manual classification of the 10,000 most frequent search words in the log of
December 2006 (which we henceforth refer to as the 10K list) into one of
these categories.3 For evaluation, we chose two of the categories, Travel and
Financial Services: Travel is the largest category containing 712 words of the
10K list (as all the location names are classified into this category), while
Financial Services was the smallest, containing 240 words.

Systems: We compared three different systems that implement an iterative
algorithm for lexical learning. They are briefly summarized in Table 3.1.

Basilisk The algorithm by Thelen and Riloff (2002) [56]

Espresso The algorithm by Pantel and Pennacchiotti (2006) [42]

Tchai The proposed algorithm described in this chapter.

For each system, we gave the same seed instances. The seed instances are
the 5 most frequent words belonging to these categories in the 10K list; they

3The manual classification assigns only one category per word, which is not optimal given
how ambiguous the category memberships are. However, it is also very difficult to reliably
perform a multi-class categorization by hand.
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Table 3.2. Seed instances for each category

Category Seeds

Travel jal, ana, jr, U % 5 A (jalan), his

Finance A7 3817 (Mizuho Bank), —H:{1&K#R1T (Sumitomo Mitsui
Bank Corporation), jcb, #4287 (Shinsei Bank), B/#E%%# (No-
mura Securities)

Table 3.3. Comparison with manual classification (10K list):Travel Category

‘ Manual classification ‘
‘ Travel Not Travel ‘

280 17 251

Not in the 10K list

Tehai Travel

Not Travel 0 7 125

Table 3.4. Comparison with manual classification (10K list): Finance Category

lassificati ) .
‘ Me.anual classi 1ca‘ on ‘ Not in the 10K list
\ Finance Not Finance \

41 30 30

. Finance
Tchai

Not Finance 0 5 99

are given in Table 3.2. For the Travel category, “jal” and “ana” are airline com-
panies, “jr” stands for Japan Railways, “jalan” is an online travel information
site, and “his” is a travel agency. In the Finance category, three of them are
banks, and the other two are a securities company and a credit card firm.
Basilisk starts by extracting 20 patterns, and adds 100 instances per iteration.
Espresso and Tchai start by extracting 5 patterns and add 200 instances per
iteration. Basilisk and Tchai iterated 20 times, while Espresso iterated only 5
times due to computation time.

3.3.3 Results of the Tchai Algorithm

Tables 3.3 and 3.4 present the results of the Tchai algorithm compared to the
manual classification. The figures “in the 10K list” show precision of the algo-
rithm; whereas the figures “not in the 10K list” show whether the algorithm
finds infrequent instances in web search query logs. Table 3.3 shows the re-
sults for the Travel category. The precision of Tchai is very high: out of the
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Table 3.5. Sample of extracted instances

Type Instance

Location koL a (Turkey), 7 A XA X (Las Vegas), 2NV K (Bali Island)

Travel agencies jtb, F 27 — (http://www.tocoo.jp/), yahoo (Yahoo! Travel),
net cruiser

Attractions 7 4 A=—7 v I (Disneyland), usj (Universal Studio Japan)

Hotels W E & 7L (Imperial Hotel), V v (Ritz)

Transportation 5247 (Keihin Express), %5 R4 (Nara Kotsu Bus Lines)

297 words classified into the Travel category that were also in the 10K list,
280 (92.1%) were learned correctly. As the 10K list contained 712 words in the
Travel category, the recall against that list is fairly low (ca.40%). The primary
reason for this is that all location names are classified as Travel in the 10K list,
and 20 iterations are not enough to enumerate all frequent location names.
Another reason is that the 10K list consists of queries but our algorithm ex-
tracts instances. This sometimes causes a mismatch, e.g., Tchai extracts “Ritz”
but the 10K list contains “Ritz Hotel”.

It turned out that the 17 instances that represent the precision error were
due to the ambiguity of hand labeling, as in “Tokyo Disneyland” which is
a popular travel destination, but is classified as Entertainment in the manual
annotation. We were also able to correctly learn 251 words that were not in the
10K list according to manual verification; we also harvested 125 new words
incorrectly into the Travel category, but these words include common nouns
related to Travel, such as “fishing” and “rental car”.

On the other hand, Table 3.4 shows the results for the Finance category.
It exhibits a similar trend with the Travel category, but fewer instances are
extracted. This is because the Finance category is a closed category which
does not have many named entities such as location names. It is one of the
future work to mine infrequent instances from query logs.

Sample instances harvested by our algorithm are given in Table 3.5. It
includes subclasses of travel-related terms, for some of which no seed words
were given (such as Hotels and Attractions). We also note that segmentation
errors are entirely absent from the collected terms, demonstrating that query
logs are in fact excellently suited for acquiring new words for languages with
no explicit word segmentation in text.
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Figure 3.1. Precision for each system: Travel

3.3.4 Comparison with Basilisk and Espresso

Figures 3.1 and 3.2 show the precision results comparing Tchai with Basilisk
and Espresso for the Travel and Finance categories. Tchai outperforms Basilisk
and Espresso for both categories: its precision is constantly higher for the
Travel category, and it achieves excellent precision for the Finance category,
especially in early iterations. The differences in behavior between these two
categories are due to the inherent size of these categories. For the smaller Fi-
nance category, Basilisk and Espresso both suffered from the effect of generic
patterns such as “#4 — AL X—” (homepage) and “#7 — F” (card) in early
iterations, whereas Tchai did not select these patterns. The more patterns
used for instance extraction, the more likely bootstrapping algorithms tend to
select generic patterns. Thus, it is necessary to investigate a way to calibrate
parameters for each algorithm and category.

Comparing these algorithms in terms of recall is more difficult, as the
complete set of words for each category is not known. However, we can
estimate the relative recall given the recall of another system. Pantel and
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Figure 3.2. Precision for each system: Finance

Ravichandran (2004) [43] defined relative recall as:

Ra _Ca/C _Ca _ Pax|A]|
Ram— X4 _ L 3.7
AlB RB CB/C CB PB X |B| ( )

where R, |p is the relative recall of system A given system B, C4 and Cp are
the number of correct instances of each system, and C is the number of true
correct instances. C4 and Cp can be calculated by using the precision, P4 and
Pp, and the number of instances from each system. Using this formula, we
estimated the relative recall of each system relative to Espresso.

Tables 3.6 and 3.7 show that Tchai achieved the best results in both pre-
cision and relative recall in the Travel category. In the Finance category,
Espresso received the highest relative call but the lowest precision. This is
because Tchai uses a filtering method so as not to select generic patterns and
instances. The use of generic patterns did not improve as much as [42] re-
ported even in the Finance category, therefore it is safe to say that our simple
filtering of the Tchai algorithm is enough to filter generic patterns.

Table 3.8 shows the context patterns acquired by different systems after 4
iterations for the Travel category.*The patterns extracted by Basilisk are not

*Note that Basilisk and Espresso use context patterns only for the sake of collecting in-
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Table 3.6. Relative recall: Travel
Systems # of instances Precision Relative recall

Basilisk 651 63.4% 1.26
Espresso 500 65.6% 1.00
Tchai 680 80.6% 1.67

Table 3.7. Relative recall: Finance
Systems # of instances Precision Relative recall

Basilisk 278 27.3% 0.70
Espresso 704 15.2% 1.00
Tchai 223 35.0% 0.73

entirely characteristic of the Travel category. For example, “p#sonic” and
“google+#lytics” only match the seed word “ana”, and are clearly irrelevant
to the category. Basilisk uses token count to estimate the score of a pattern,
which may explain the extraction of these patterns. Both Basilisk and Espresso
identify location names as context patterns (e.g., “#5 (" (Tokyo), “#JuM”
(Kyushu)), which may be too generic to be characteristic of the category. In
contrast, Tchai finds context patterns that are highly characteristic, including
terms related to transportation (“#+i&Zfi%223” (discount plane ticket), “#~
A L —%” (mileage)) and accommodation (“#+4 7 )L (hotel)).

3.3.5 Contributions of Tchai Components

In this section, we examine the contribution of each modification to the Espresso
algorithm we made in Tchai.

Figure 3.3 compares the original Espresso algorithm and the modified
Espresso algorithm which performs the pattern induction step only at the be-
ginning of the bootstrapping process, as described in Section 3.2.4. Although
there is no significant difference in precision between the two systems, this
modification greatly improves the computation time and enables efficient ex-
traction of instances. We believe that our choice of the seed instances to be
the most frequent words in the category produces sufficient patterns for ex-

stances, and are not interested in the patterns per se. However, they can be quite useful in
characterizing the semantic categories they are acquired for, so we chose to compare them
here.
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Table 3.8. Sample of extracted patterns for each algorithm

Systems Pattern

Basilisk  § ®LHA (east Japan), f P HA (west Japan), pfisonic, f K%l
(timetable), § JuM (Kyushu), f+¥ A L —2 (mileage), § /S A
(bus), google+flytics, f+£k (fee), f+EN (domestic), § &7 L
(hotel)

Espresso  #$/3A, HA § (Japan), § & 7 )V, § i (road), § 4 ~ (inn), 7
# (Fuji), § 5 (Tokyo), KBl § JuM, § X2, +R1T (travel),
i+ 2 (Nagoya)

Tchai f+A TV, g+ 7 — (tour), §+IRfT, § 7Y (reservation), f§-+i%2
7% (flight ticket), f+#&ZM1%27¢ (discount flight ticket), f+ A
L —, PIH%E+1 (Haneda Airport)

tracting new instances.

Figure 3.4 illustrates the effect of each modification proposed in Sections
3.2.2 and 3.2.3 for the Tchai algorithm on the Travel category. Each line in the
graph corresponds to the Tchai algorithm with and without the modification.
It shows that the modification to the max pmi function (purple; -noscaling)
contributes most significantly to the improved accuracy of our system. The
filtering of generic patterns (green; —nofilter) does not show a large effect in
the precision of the acquired instances for this category, but produces steadily
better results than the system without it.

3.4. Discussion

We propose a minimally supervised bootstrapping algorithm called Tchai.
The main contribution of this work is to adapt the general-purpose Espresso
algorithm to work well on the task of learning semantic categories of words
from query logs. The proposed method not only has a superior performance
in the precision of the acquired words into semantic categories, but is faster
and collects more meaningful context patterns for characterizing the cate-
gories than the unmodified Espresso algorithm. We have also shown that
the proposed method requires no pre-segmentation of the source text for the
purpose of knowledge acquisition.

Bootstrapping algorithms, however, often have many parameters to opti-
mize and hence are difficult to use in practice. We will see in the next chapter
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Figure 3.3. Effect of modification to pattern extraction step

Precision of Extracted Lexicon

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

\(m

~ e
/AN

e Tchai

= | Chai-nofilter

== Tchai-noscaling

0 200 400 600 800 1000

Total Lexicon Entries

Figure 3.4. Precision of Tchai in Travel Category
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that parameter tuning is crucial for Espresso-style bootstrapping algorithms
to achieve the best performance. Also, we present a graph-based analysis of
Espresso-style bootstrapping algorithms to elicit the cause of semantic drift of
bootstrapping algorithms. We will see that semantic drift is persistent across
NLP tasks such as semantic category acquisition and word sense disambigua-
tion in Chapters 4, 5 and 7, and that proposed methods overcome the problem
of semantic drift in Chapters 5, 6 and 7.
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Graph-based Analysis of Espresso-style
Bootstrapping Algorithms

A major drawback of bootstrapping is the lack of principled method for se-
lecting optimal parameter values [36, 5]. Also, there is an issue of generic
patterns which deteriorates the quality of acquired instances. Previously pro-
posed bootstrapping algorithms differ in how they deal with the problem of
semantic drift. We have taken recently proposed Espresso algorithm as the
example to explain common configuration for bootstrapping.

It is known that bootstrapping often acquires instances not related to seed
instances. For example, consider the task of collecting the names of common
tourist sites from web corpora. Given words like “Geneva” and “Bali” as
seed instances, bootstrapping would eventually learn generic patterns such as
“pictures” and “photos,” which also co-occur with many other unrelated in-
stances. The subsequent iterations would likely acquire frequent words that
co-occur with these generic patterns, such as “Britney Spears.” This phe-
nomenon is called semantic drift [16].

A straightforward approach to avoid semantic drift is to terminate itera-
tions before hitting generic patterns, but the optimal number of iterations is
task dependent and is hard to come by. The recently proposed Espresso [42] al-
gorithm described in Chapter 3 incorporates sophisticated scoring functions
to cope with generic patterns, but as we have pointed out in the previous
chapter, Espresso still shows semantic drift unless iterations are terminated
appropriately.

Another deficiency in bootstrapping is its sensitivity to many parameters
such as the number of seed instances, the stopping criterion of iteration, the
number of instances and patterns selected on each iteration, and so forth.
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These parameters also need to be calibrated for each task.

In this chapter, we present a graph-theoretic analysis of Espresso-like boot-
strapping algorithms. We argue that semantic drift is inherent in these al-
gorithms, and apply two graph-based algorithms that are theoretically less
prone to semantic drift, as an alternative to bootstrapping.

First, we analyze in Section 4.1 a bootstrapping algorithm (Simplified Espresso)
which can be thought of as a degenerate version of Espresso. Simplified
Espresso is simple enough to allow an algebraic treatment, and its equiva-
lence to Kleinberg’s HITS algorithm [27] is shown. An implication of this
equivalence is that semantic drift in this bootstrapping algorithm is essen-
tially the same phenomenon as topic drift observed in link analysis. Another
implication is that semantic drift is inevitable in Simplified Espresso as it con-
verges to the same score vector regardless of seed instances.

The original Espresso also suffers from the same problem as its simplified
version does. It incorporates heuristics not present in Simplified Espresso to
reduce semantic drift, but these heuristics have limited effect as we demon-
strate in Section 4.1.3.

In Section 4.2, we propose two graph-based algorithms to reduce semantic
drift. These algorithms are used in link analysis community to reduce the
effect of topic drift. In Section 4.2.3, we show connection between label prop-
agation approach and the proposed graph-based methods. In Chapter 5 we
apply them to the task of word sense disambiguation (WSD) on Senseval-3
Lexical Sample Task and verify that they indeed reduce semantic drift. In
Chapter 6 we explore the task of bilingual dictionary construction and se-
mantic category acquisition to apply the proposed algorithms in Chapter 7.

4.1. Analysis of an Espresso-like Bootstrapping Al-
gorithm

4.1.1 Simplified Espresso

Let us consider a simple bootstrapping algorithm illustrated in Figure 4.1,
in order to elucidate the cause of semantic drift.

As before, let |I| and |P| be the numbers of instances and patterns, re-
spectively. The algorithm takes a seed vector ip, and a pattern-instance co-
occurrence matrix M as input. ip is a |I|-dimensional vector with 1 at the
position of seed instances, and 0 elsewhere. M is a |P| x |I|-matrix whose
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input:  seed vector iy

input:  pattern-instance co-occurrence matrix M
output: instance score vector i

output: pattern score vector p

1

2

33 p— Mi

4:  Normalize p

5: i MTP

6:  Normalize i

7: until i and p have both converged
8: return i and p

Figure 4.1. A simple bootstrapping algorithm

(p,i)-element [M],,; holds the (possibly re-weighted) number of co-occurrence
of pattern p and instance 7 in the corpus. If both i and p have converged, the
algorithm returns the pair of i and p as output.

This algorithm, though simple, can encode Espresso’s update formulae
(3.1) and (3.2) as Steps 3 through 6 if we pose

max pmi’

M, = Prlin) @)

and normalize p and i in Steps 4 and 6 by
p<p/ll] and i+i/|P|, (4.2)

respectively.

This specific instance of the algorithm of Figure 4.1 obtained by special-
ization through Equations (4.1) and (4.2), will be henceforth referred to as
Simplified Espresso. Indeed, it is an instance of the original Espresso in which
the iteration is not terminated until convergence, all instances are carried over
to the next iteration, and instances are not cumulatively learned.

4.1.2 Simplified Espresso as Link Analysis

Let n denote the number of times Steps 2-8 are iterated. Plugging (4.1) and
(4.2) into Steps 3-6, we see that the score vector of instances after the nth
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iteration is
i, = A (4.3)

where

1

_ T
A= —HleM M. (4.4)

Suppose matrix A is irreducible; i.e., the graph induced by taking A as
the adjacency matrix is connected. If n is increased and i, is normalized on
each iteration, i, tends to the principal eigenvector of A. This implies that
no matter what seed instances are input, the algorithm will end up with the
the principal eigenvector of A is identical to the authority vector of HITS| [27]
algorithm run on the graph induced by M. ! This similarity of Equations (3.1),
(3.2) and HITS is not discussed in [42].

As a consequence of the above discussion, semantic drift in simplified
Espresso seems to be inevitable as the iteration proceeds, since the principal
eigenvector of A need not resemble seed vector ip. A similar phenomenon is
reported for HITS and is known as topic drift, in which pages of the dominant
topic are ranked high regardless of the given query. [6]

Unlike HITS and Simplified Espresso, however, Espresso and other boot-
strapping algorithms [61, 47], incorporate heuristics so that only patterns and
instances with high confidence score are carried over to the next iteration. We
denote this heuristics as filtering and experiment the effect of the heuristics in
the next section.

same ranking of instances, if it is run until convergence. Because A =

4.1.3 Convergence Process of Espresso

To investigate the effect of semantic drift on Espresso with and without the
heuristics of selecting the most confident instances on each iteration (i.e., the
original Espresso and Simplified Espresso of Section 4.1.2), we apply them to
the task of word sense disambiguation.

The task of WSD is to correctly predict the senses of test instances whose
true sense is hidden from the system, using training data and their true senses.

! As long as the relative magnitude of the components of vector i, is preserved, the vector
can be normalized in any way on each iteration. Hence HITS and Simplified Espresso both
converge to the principal eigenvector of A, even though use different normalization.
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To predict the sense of a given instance i, we apply k-nearest neighbour algo-
rithm.
Given a test instance i, its sense is predicted with the following procedure:

1. Compute the instance-pattern matrix M from the entire set of instances.
We defer the details of this step to Section 5.3.

2. Run Simplified Espresso and Espresso using the given instance i as the
only seed instance.

3. After the termination of the algorithm, select k training instances with
the highest scores in the score vector i output by the algorithm.

4. Since the selected k instances are training instances, their true senses
are accessible. Choose the majority sense s from these k instances, and
output s as the prediction for the given instance i. When there is a tie,
output the sense of the instance with the highest score in i.

Note that only Step (3) uses sense information. Steps (3) and (4) can be
regarded as a k-nearest neighbour method [15] using the confidence score
of instances of (Simplified) Espresso after termination of the algorithms as
proximity measure. 2 k-nearest neighbour is simple but reported to achieve
high performance in the task of word sense disambiguation. [35]

As we can see from Step (2), the instance to disambiguate is used as a seed
instance. Therefore, unlike relation extraction and named entity classification
tasks there is no choice in selecting a seed in word sense disambiguation task.
It is desirable since we can exclude the effect of the choice of seeds from
evaluation.

We use the Senseval-3 Lexical Sample (S3LS) Task data. 3 and the standard
training-test split provided with the data set.

In this section we choose a word “bank” to see typical behaviour for each
algorithm. We report overall results in Chapter 5. In S3LS dataset, there are
394 instances of word “bank” and their occurring context in this dataset, and
each of them is annotated with its true sense. Of the ten senses of bank, the
most frequent is the bank as in “bank of the river.”

2We opted for a simplistic approach instead of using weighted voting or Support Vector
Machines because our goal was not to build a state-of-the-art word sense disambiguation
system.

3h’ctp: / /www.senseval.org/senseval3/data.html
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On each iteration of Espresso, we cleared all but the 100 top-scoring in-
stances in the instance vector and used only retained instances to compute
the pattern score vector. The number of non-zeroed instance scores was in-
creased by 100 on each iteration. On the other hand, we cleared all but the
20 top-scoring patterns in the pattern vector and used only retained patterns
to compute the instance score vector on each iteration. These numbers are
different from the original paper [42] because we conducted a preliminary
experiment to find optimal values. However, the number of non-zeroed pat-
terns was increased by 1 on each iteration just like [42] 4 The values of other
parameters remain the same as those for simplified Espresso in Section 4.1.1.
More specifically, we used Equations (3.1) and (3.2) as scoring functions and
instances were learned according to the final scores.

Furthermore, although [42] shows a stopping criterion for the task of rela-
tion extraction, the criterion lacks generality and is not readily applicable to
other tasks such as word sense disambiguation. Therefore, we did not explic-
itly set a stopping criterion; rather, we ran the algorithm until convergence
and observed accuracy on each iteration.

Figure 4.2 shows the convergence process of Simplified-Espresso and Espresso.

X-axis indicates the number of bootstrapping iterations and Y-axis indicates
linstances being assigned the correct sense\)
[total attempts of prediction| :

Simplified Espresso tends to select the most frequent sense as the itera-
tion proceeds, and after nine iterations it selects the most frequent sense (“the
bank of the river”) regardless of the seed instances. As expected from the
discussion in Section 4.1.2, generic patterns gradually got more weight and
semantic drift occurred in later iterations. Indeed, the ranking of the instances
after convergence was identical to the HITS authority ranking computed from
instance-pattern matrix M (i.e., the ranking induced by the dominant eigen-
vector of MTM).

On the other hand, Espresso suffers less from semantic drift. The final re-
call achieved was 0.773 after convergence on the 20th iteration, outperforming
the most-frequent sense baseline by 0.10. However, a closer look reveals that
the filtering heuristics is limited in effectiveness.

Figure 4.3 plots the learning curve of Espresso on the set of test instances.

linstances being assigned the correct sense|
We show recall ( [total instances to be predicted|

the accuracy (=

) of each sense to see how

4The number of initial patterns is relatively large because of a data sparseness problem
in WSD, unlike relation extraction and named entity recognition. Also, WSD basically uses
more features than relation extraction and thus it is hard to determine the stopping criterion
based on the number and scores of patterns, as [42] does.
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Figure 4.2. Accuracy of Simplified Espresso and Espresso

Espresso tends to select the most frequent sense. If semantic drift takes place,
the number of instances predicted as the most frequent sense should increase
as the iteration proceeds, resulting in increased recall on the most frequent
sense and decreased recall on other senses. Figure 4.3 exactly exhibit this
trend, meaning that Espresso is not completely free from semantic drift. Fig-
ure 4.2 also shows that the recall of Espresso starts to decay after the seventh
iteration.

4.2. Two Graph-based Algorithms to Reduce Seman-
tic Drift

We explore two graph-based methods which have the advantage of Espresso
to harness the property of generic patterns by the mutual recursive definition
of instance and pattern scores. They also have less parameters than bootstrap-
ping, and are less prone to semantic drift.
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Figure 4.3. Recall of Espresso on the instances having “bank of the river” and
other senses

4.2.1 Von Neumann Kernel

Kandola et al. [26] proposed the von Neumann kernels for measuring similarity
of documents using words. If we apply the von Neumann kernels to the
pattern-instance co-occurrence matrix instead of the document-word matrix,
the relative importance of an instance to seed instances can be estimated.

Let A = MM be the instance similarity matrix obtained from pattern-
instance matrix M, and A be the principal eigenvalue of A. The von Neumann
kernel matrix K, with diffusion factor a (0 < a < A~1) is defined as follows:

Ke = AY a"A"=A(I—aA) . (4.5)
n=0

The similarity between two instances i, is given by the (i,j) element of K,.
Hence, the i-th column vector (= i-th row vector, since K, is symmetric) can
be used as the score vector for seed instance i.
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Ito et al. [24] showed that the von Neumann kernels represent a mixture of
the co-citation relatedness and Kleinberg’s HITS importance. They compute
the weighted sum of all paths between two nodes in the co-citation graph
induced by A = MTM. The (M M)" term of smaller n corresponds to the re-
latedness to the seed instances, and the (M M)" term of larger n corresponds
to HITS importance. The von Neumann kernels calculate the weighted sum
of (MTM)" from n = 1 to oo, and therefore smaller diffusion factor a results
in ranking by relatedness, and larger « returns ranking by HITS importance.

Given these definitions, we see that the (M”M)" term of n = 1 corre-
sponds to the co-citation relatedness. Also, (MTM)" term of larger n tends
to Kleinberg’s HITS importance. Therefore, when diffusion factor is small the
algorithm gives a ranking obeying relatedness whereas when diffusion factor
is large it gives a ranking obeying HITS importance.

As a result, if diffusion factor « is configured properly, it is expected that
resulting similarity measure will balance the most frequent sense and other
rare senses. We verify this claim in Section 5.4.

4.2.2 Regularized Laplacian Kernel

The von Neumann kernels can be regarded as a mixture of relatedness and
importance, and diffusion factor a controls the trade-off between relatedness
and importance. Because there is only one parameter, to optimize diffusion
factor is much easier than tweaking bootstrapping algorithms. In practice,
however, setting the right parameter value becomes an issue. We solve this
problem by the regularized Laplacian [53, 13] proposed in link analysis com-
munity as a relatedness measure. It has diffusion parameter just as von Neu-
mann kernel does, but is stable across its diffusion factors and thus supposed
to be easy to calibrate. In addition, unlike von Neumann kernel, it does not
become an importance measure even though diffusion factor is large; instead,
it remains a relatedness measure. This property is appealing to the tasks that
bootstrapping algorithms are typically applied to. In fact, this kernel tends to
a uniform matrix as & — oo.

Let G be a weighted undirected graph whose adjacency (weight) matrix is
a symmetric matrix A. The (normalized) graph Laplacian £ of a graph G is
defined as follows:

L=1-D"12AD V2 (4.6)

35



CHAPTER 4. GRAPH-BASED ANALYSIS OF ESPRESSO-STYLE
BOOTSTRAPPING ALGORITHMS

where D is a diagonal matrix, and the ith diagonal element [D];; is given by

[Dlii = Y _[Alj; (4.7)
j

Here, [A];; stands for the (i,j) element of A. By replacing A with —L in
Equation (4.5) and deleting the first A, we obtain a regularized Laplacian kernel.

[e0]

Re= Y a"(—L)"=(I+aL)! (4.8)
n=0

Again, a(0 < a < A71) is called the diffusion factor.

Both the regularized Laplacian and the von Neumann kernels include ar-
guments of higher order and thus take higher order correlation between in-
stances into account.

The main difference between the regularized Laplacian and the von Neu-
mann kernel lies in the normalization of A by D~1/2AD~1/2, The weight of
edges connecting to nodes (instances) with high degree (which means that
the instances co-occur with generic patterns) will get lowered by this normal-
ization, and therefore the effect of generic patterns will be suppressed.

4.2.3 Connection to Label Propagation

Graph-based semi-supervised methods such as label propagation are known
to achieve high performance with only a few seeds and have the advantage
of scalability.

Figure 4.4 illustrates the process of label propagation using a seed term
“singapore” to learn the Travel domain.

This is a bipartite graph whose left-hand side nodes are terms (instances)
and right-hand side nodes are patterns. The strength of lines indicates re-
latedness between each node. The darker a node, the more likely it belongs
to the Travel domain. Starting from “singapore,” the pattern “f airlines” °
is strongly related to “singapore,” and thus the label of “singapore” will be
propagated to the pattern. On the other hand, the pattern “§ map” is a neu-
tral pattern which co-occurs with terms other than the Travel domain such
as “google” and “yahoo.” Since the term “china” shares two patterns, “f air-
lines” and “f map,” with “singapore,” the label of the seed term “singapore”
propagates to “china.” “China” will then be classified in the Travel domain.

54 is the place into which an instance fits.
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Figure 4.4. Labels of seeds are propagated to unlabeled nodes.

Figure 4.5 depicts a label propagation algorithm based on Zhou et al.
(2004) [62]. Let X be a set of all instances. In the task of learning one category,
F(t) is a score vector of X’ on t-th iteration with dimension being the number
of the element X, |X'|. The value of the i-th dimension of F(t) represents the
degree that the i-th instance of X, x; belongs to the target category. Thus, F(t)
is a score vector of the target category. Given a seed instance set, if the set
contains x;, the score of the i-th element of the input, F (0), holds 1, otherwise
0. The algorithm uses the instance similarity matrix A of dimension |X| x |X|
to update the score vector; and finally outputs F(t) after convergence.

In the task of learning two categories, F(f) can be regarded as a vector
of dimension |X|. the score of the i-th element of F(0) holds either 1 or —1
depending on the class, respectively.

In the task of learning more than n(n > 3), F(t) is a |X| X n matrix. The
j-th column vector corresponds to a score vector of a category j. To classify
which class an instance belongs to, the instance is assigned the j-th class in
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Input:  Seed instance vector F(0)
Input:  Instance similarity matrix A
Output: Instance score vector F(t)

1: Iterate F(t+ 1) = aAF(t) + (1 — a)F(0) until convergence

Figure 4.5. Simple label propagation algorithm

which it has the highest score in the j-th column vector. Note that this can be
applied to the task of learning two categories as well, and the task of learning
single category is the special case of this method with n = 1.

Label propagation has a parameter a(0 < a < A~!) where A is the prin-
cipal eigenvalue of A. Parameter a controls how much the labels of seeds
are emphasized. As a approaches 0 it puts more weight on labeled instances,
while as a increases it employs both labeled and unlabeled data.

However, this algorithm has a problem of semantic drift depending on
the way to create a similarity matrix. Especially, when a similarity matrix is
computed from an instance-pattern co-occurrence matrix as A = WTW, the
ranking of the output of the algorithm described in Figure 4.5 is identical to
those of the authority vector of Kleinberg’s HITS [27], and hence does not
depend on seed instances [24]. In the previous section, we showed that this
phenomenon is known as topic drift in HITS and is called as semantic drift in
bootstrapping algorithms. Zhou et al. (2004) [62] set the diagonal element of
a similarity matrix A;; = 0 to solve the problem of semantic drift.

The difference between [62] and our work is that the way we create a
similarity matrix and the application of the regularized Laplacian to the sim-
ilarity matrix. The regularized Laplacian normalizes its weights when a node
is connected to many other nodes. This normalization downweights generic
patterns and thus makes the regularized Laplacian less prone to semantic
drift.

In this way, label propagation gradually propagates the label of seed in-
stances to neighbouring nodes, and optimal labels are given as the labels at
which the label propagation process has converged.

Figure 4.6 describes label propagation based on the regularized Laplacian.
Let a sample x; be x; € X, F(0) be a score vector of x comprised of a label set
y; € Y, and F(t) be a score vector of x after step t. Instance-instance similarity
matrix A is defined as A = WTW where Wis a row-normalized instance-pattern
matrix. The (i, j)-th element of W;; contains the normalized frequency of co-
occurrence of instance x; and pattern p;. D is a diagonal degree matrix of N
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Input:  Seed instance vector F(0)
Input:  Instance similarity matrix A
Output: Instance score vector F(t)

1: Construct the normalized Laplacian £ = [ — D~1/2AD~1/2
2: Iterate F(t+1) = a(—L)F(t) + (1 — «)F(0) until convergence

Figure 4.6. The Laplacian label propagation algorithm

where the (7,)-th element of D is given as D;; = }_; Nj;. .

Graph-based minimally supervised methods such as label propagation
make final classification using the scores of nodes assigned by weighted vot-
ing of labels on each iteration. We show that using the normalized Laplacian
as a similarity matrix in label propagation gives the regularized Laplacian
kernel [53] described in Section 4.2.

First, let us prove the sequence F(t) converges to F* = (1 —a)(I +a£L) 1F(0).
By iterative algorithm,

F(t) = (a(=L))""'F(0) + (1 — ) O(t%(—ﬁ))il“(o)-

|
—

Suppose 0 < a < 1/2. Since the eigenvalues of (—L) lie in the range [—2,0],
we have

lim (a(—£))" 1 =0

t—oo
and
t—1
tlim Z(«x(—ﬁ))’ =(I— oc(—E))_1 = (I—i—ocﬁ)_l.
Therefore,

F* = lim F(t) = (1 — a)(I +aL) " F(0).

t—o0

We can ignore (1 — «) for classification, and hence get
F* = (I+aL) 'F(0). (4.9)
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This is the same equation of the regularized Laplacian kernel [53] as we ex-
plained in Section 4.2, which means that the Laplacian label propagation vir-
tually uses the regularized Laplacian kernel for weighted voting for the final
classification.

However, the matrix inversion leads to O(n%) complexity, which is far from
realistic in a real-world configuration. Nonetheless, it can be approximated by
fixing the number of steps for label propagation. We will see how to calculate
the regularized Laplacian efficiently in Chapter 7.

4.3. Discussion

In this chapter we propose a graph-based analysis of Espresso-style bootstrap-
ping algorithms. We show that the source of semantic drift has the same root
as topic drift, and present two graph-based algorithms as an alternative to
bootstrapping. We will see in the following chapters the regularized Lapla-
cian performs state-of-the-art for various natural language processing tasks.
We have indicated connection between the regularized Laplacian and a vari-
ant of label propagation method. We will present an approximation to the
regularized Laplacian and show that it scales to large amount of real-world
data in Chapter 7.
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Word Sense Disambiguation

Word sense disambiguation (WSD) is one of the central tasks of natural lan-
guage processing. In recent years a number of shared tasks such as Sense-
val! and Semeval?® have been held to evaluate WSD systems. However, most
state-of-the-art WSD systems heavily rely on sense tagged corpora such as
SemCor> and rich thesauri such as WordNet?*, which are not readily available
to many languages. So far, reducing the cost of human annotation is one of
the important problems for building WSD systems.

Yarowsky [61] first presented bootstrapping-based WSD system which ri-
vals supervised techniques. The system exploits two properties of human
language, that there is: (i) one sense per collocation, and (ii) one sense per dis-
course, and it iteratively learns classifiers to disambiguate polysemous words.
Bootstrapping methods require only a small amount of instances to start with,
but can easily multiply the number of labeled instances with minimal human
annotation cost. There are many WSD systems using semi-supervised tech-
niques [33, 31, 45, 37].

However, bootstrapping-based WSD is not free from semantic drift, as
we described in Section 4.1.1. For example, suppose one would like to dis-
ambiguate a word “interest” with local bag-of-words features. Given seed
instance with the “a feeling of wanting to know or learn about” sense, boot-
strapping would eventually learn generic patterns such as your, rate in “rate
your interest,” which also co-occur with many other unrelated instances like

1h’ctp: //www.senseval.org/

thtp: / /nlp.cs.swarthmore.edu/semeval/

Shttp:/ /www.cs.unt.edu/ rada/downloads.html#semcor
4h’ctp: / /wordnet.princeton.edu/
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Thus , the first payment should be on or after the date on which the
Deed of Covenant is signed . You cannot simply draw up a covenant
( or a Deposited Covenant Agreement ) to cover a donation you have
already made in the hope that ACET can obtain tax advantage on the
sum given . However , it can be possible for the documents to be
signed after you have sent a payment by cheque provided that you
arrange for us to hold the cheque and not pay it into the bank until we
have received the signed Deed of Covenant . What happens if I have
difficulty in continuing to make payments ? If this unlikely situation
arises , you should discuss the problem with us .

Figure 5.1. Excerpt from S3LS dataset for an instance of bank

“your interest rate.” The subsequent iterations would likely acquire instances
with “money paid for the use of money” sense.

Therefore, in this chapter, we evaluate the performance of the proposed
graph-based algorithms against Espresso and show the effectiveness and ro-
bustness of the regularized Laplacian.

5.1. Common Experimental Settings

We evaluated the von Neumann kernel and the regularized Laplacian pro-
posed in Chapter 4 with the task of word sense disambiguation using S3LS.
We computed a pattern-instance co-occurrence matrix M from the same Equa-
tion 4.1 as Simplified Espresso. We used two types of patterns.

Unordered single words (bag-of-words) We used all single words (unigrams)
in the provided context of a target instance from S3LS data sets. For exam-
ple, Figure 5.1 shows the context of an instance of bank. Words are a set of
{ “Thus”, “,”, “the”, ... }. Each word in the context represents one pattern;
e.g. “Thus” is a bag-of-words pattern in the example above. Words were

lowercased and pre-processed with the Porter Stemmer®.

Local collocations A local collocation refers to the ordered sequence of to-
kens in the local, narrow context of the target word. We allowed a pattern to

5 http:/ /tartarus.org/ martin/PorterStemmer/def.txt
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Table 5.1. Recall of predicted labels of bank

algorithm ‘ MEFES others
Simplified Espresso 100.0 0.0
Espresso 100.0 30.2
Espresso (optimal stopping) | 94.4 67.4
von Neumann kernels 921 65.1
regularized Laplacian 92.1 62.8

have wildcard expressions like “sale of * interest in * *” for the target word
interest. We set the window size to £3 by a preliminary experiment.

Diffusion factor « was set to 107> for the von Neumann kernel and 102
for the regularized Laplacian, respectively.

5.2. Experiment 1: Reducing Semantic Drift

We test the von Neumann kernels and the regularized Laplacian on the same
task as we used in Section 4.1.3; i.e., word sense disambiguation of word
“bank.” During the training phase, a pattern-instance matrix M was con-
structed using the training and testing data from Senseval-3 Lexical Sample
(S3LS) Task. The (i, j) element of M of both kernels is set to pointwise mutual
information of a pattern i and an instance j, just the same as in Espresso.

Table 5.1 illustrates how well the proposed methods reduce semantic drift,
just the same as the experiment of Figure 4.3 in Section 4.1.3. We evalu-
ate the recall on predicting the most frequent sense (MFS) and the recall on
predicting other less frequent senses (others). For Espresso, two results are
shown: the result on the seventh iteration, which maximizes the performance
(Espresso (optimal stopping)), and the one after convergence. As in Section
4.1.3, if semantic drift occurs, recall of prediction on the most frequent sense
increases while recall of prediction on other senses declines. Even Espresso
was affected by semantic drift, which is again a consequence of the inher-
ent graphical nature of Espresso-like bootstrapping algorithms. On the other
hand, both proposed methods succeeded to balance the most frequent sense
and other senses. Espresso at the optimal number of iterations achieved the
best performance. Nevertheless, the number of iterations has to be estimated
separately.
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Table 5.2. Accuracy of WSD algorithms

algorithm ‘ noun  all
most frequent sense ‘ 54.5 55.2
HyperLex [57] 64.6 —
PageRank [3] 64.5 —
Simplified Espresso 441 428
Espresso 469 59.1
Espresso (optimal stopping) 66.5 63.6
von Neumann kernels (x = 107%) | 67.2 64.9
regularized Laplacian (« = 1072) | 67.1 654

5.3. Experiment 2: WSD Benchmark Data

In order to show the effectiveness of the two kernels, we conducted experi-
ments on the task of word sense disambiguation of S3LS data, this time not
just on the word “bank” but on all target nouns in the data, following [3].
We report the results of Espresso both after convergence, and with its optimal
number of iterations to show the upper bound of its performance.

Table 5.2 compares proposed methods with Espresso with various con-
tigurations. The proposed methods outperform by a large margin the most
frequent sense baseline and both Simplified- and Espresso (after convergence
and optimal stopping). This means that the proposed methods effectively
prevent semantic drift.

Also, Espresso without early stopping shows more or less identical per-
formance to Simplified Espresso. It is implied that the heuristics of filtering
and early stopping is a crucial step not to select generic patterns in Espresso,
and the result is consistent with the experiment of convergence process of
Espresso in Section 4.1.3.

Espresso terminated after the seventh iteration (Espresso (optimal stop-
ping)) is comparable to the proposed methods. However, in bootstrapping,
not only the number of iterations but also a large number of parameters must
be adjusted for each task and domain. This shortcoming makes it hard to
adapt bootstrapping in practical cases. One of the main advantages of the
proposed methods is that they have only one parameter & and are much eas-
ler to tune.
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It is suggested in Sections 4.1.3 and 4.2.1 that Espresso and the von Neu-
mann kernel with large a converge to the principal eigenvector of A. How-
ever, both Simplified- and Espresso are 10 points lower than the most frequent
sense baseline. The reason seems to be because Espresso and the von Neu-
mann kernels use pointwise mutual information as a weighting factor so that
the principal eigenvector of A may not always represent the most frequent
sense.®

We also show the results of previous graph-based methods [3], based on
HyperLex [57] and PageRank [10]. These methods create an instance-pattern
co-occurrence graph and extract hubs from the graph, and then apply a WSD
algorithm based on maximum spanning tree. They use two graph-based al-
gorithms, HyperLex and PageRank to extract hubs, and report that these al-
gorithms are comparative to state-of-the-art supervised algorithms. However,
these methods have seven parameters to tune in order to achieve the best
performance, and hence are difficult to optimize.

5.4. Experiment 3: Sensitivity to a Different Diffu-
sion Factor

Figure 5.2 shows the performance of the von Neumann kernels with a diffu-
sion factor a. As expected, smaller « leads to relatedness to seed instances,
and larger « asymptotically converges to the HITS authority ranking (or equiv-
alently, Simplified Espresso).

One of the disadvantages of the von Neumann kernels over the regularized
Laplacian is their sensitivity to parameter a. Figure 5.3 illustrates the perfor-
mance of the regularized Laplacian with a diffusion factor a. The regularized
Laplacian is stable for various values of a, while the von Neumann kernels
change their behavior drastically depending on the value of «. However, «
in the von Neumann kernels is upper-bounded by the reciprocal 1/A of the
principal eigenvalue of A, and the derivatives of kernel matrices with respect
to a can be used to guide systematic calibration of « (see [24] for detail).

6A similar but more extreme case is described in [24] in which the use of a normalized
weight matrix M results in an unintuitive principal eigenvector.
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Figure 5.2. Accuracy of the von Neumann kernels with a different diffusion
factor a« on S3LS WSD task

5.5. Discussion

This chapter gives a graph-based analysis of semantic drift in Espresso-like
bootstrapping algorithms. We indicate that semantic drift in bootstrapping is
a parallel to topic drift in HITS. We confirm that the von Neumann kernels
and the regularized Laplacian reduce semantic drift in the Senseval-3 Lexical
Sample task. Our proposed methods have only one parameters and are easy
to calibrate.

It seems that semantic drift is likely to occur in the tasks of word sense
disambiguation and semantic category acquisition since patterns are more
ambiguous and abundant in these tasks than in the tasks such as relation
extraction. Because bootstrapping algorithms converge after several tens of
iterations, it is hard to calibrate parameters for each tasks. Thus, graph-based
similarity measures are supposed to be more effective than bootstrapping
algorithms in the tasks of word sense disambiguation and semantic category
acquisition. In fact, Li et al. (2008) [32] report that graph-based methods
constantly outperform self-training (bootstrapping) in the task of search query
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Figure 5.3. Accuracy of the regularized Laplacian with a different diffusion
factor a« on S3LS WSD task

classification, which is similar to the task of semantic category acquisition.

On the other hand, semantic drift may not occur in the tasks such as rela-
tion extraction where patterns are not ambiguous and only few patterns are
needed for extracting instances, because a co-occurrence graph tends to be
sparse. In this chapter, we demonstrate that two graph kernels to compute
relatedness between nodes prevent semantic drift in the task of word sense
disambiguation, where semantic drift is likely to occur. However, importance
based methods might be enough depending on the structure of graphs. We
will examine this hypothesis in Chapter 7.
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Bilingual Dictionary Construction

Translation knowledge acquisition is one of the central research topics of ma-
chine translation. However, translation knowledge acquisition often depends
on human annotation. Especially, annotation of technical terms requires do-
main knowledge. So far, reducing the cost of human annotation is one of the
important problems for building machine translation systems.

To minimize the cost of hand-tagging resources, Wikipedia has been stud-
ied as a source of bilingual lexicon extraction. Wikipedia is a multilingual free
online encyclopedia which is maintained by a community of volunteers. Cur-
rently, the English Wikipedia is the largest one with 2,297,611 articles, while
the Japanese is the fifth place with 479,908 articles. More than 200,000 articles
have both English and Japanese versions, and can easily be aligned by inter-
lingual hyperlinks of Wikipedia. However, naive extraction results in noisy
bilingual lexicon, because Wikipedia has many ambiguous titles such as “1453
(English)” pointing to “1453 4 [year] (Japanese)”. Also, domain adaptation of
the extracted lexicon is a key issue since Wikipedia is a general-purpose en-
cyclopedia.

Adafre and Rijke [2] proposed to use interlingual links in Wikipedia ar-
ticles to obtain a bilingual lexicon. Their approach of using the interlingual
links is straightforward. For each Wikipedia page in one language, they ex-
tracted interlingual hyperlinks as translations of the titles in other languages.
Although they addressed the problem of ambiguous translations, they did
not seem to disambiguate translation pairs since their aim was to find similar
sentences instead of learning a high-quality bilingual lexicon.

Recently, Erdmann [19] showed that a link structure (combination of redi-
rect page and link text information) can boost recall of bilingual lexicon ex-
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traction from Wikipedia. However, their method does not improve accuracy
of bilingual lexicon extraction, and they did not evaluate the quality of the
extracted results on machine translation system. The problem of selecting
appropriate word sense still exists.

In this chapter, we focus on extraction of a bilingual lexicon from Wikipedia.
We followed the one sense per domain assumption described in Section 6.1 and
extract the most likely translation pairs for each domain. We apply the reg-
ularized Laplacian described in Chapter 4 to the task of finding the most rel-
evant translation pairs to the domain at hand. Graph-based methods have
attracted attention in NLP tasks recently, such as word sense disambiguation
[28], knowledge acquisition [55] and language modeling [50].

Our work (1) extracts a bilingual lexicon from Wikipedia and measure its
quality on machine translation task, and (2) refines a bilingual lexicon based
on the graph structure of Wikipedia.

The rest of this chapter is organized as follows. We propose a graph-based
algorithm to disambiguate translation pairs in Section 6.1. In Section 6.2 we
explain the experimental settings of our system for Patent Translation Task at
NTCIR-7 [22]. We evaluate and discuss experimental results in Section 6.3.

6.1. Extraction of Domain Specific Bilingual Lexicon

Figure 6.1 depicts the overview of our extraction algorithm. The algorithm
constructs a bipartite graph from Wikipedia and computes similarity between
translation pairs over the graph. It requires only a small amount of transla-
tion pairs to disambiguate ambiguous translation pairs in a bilingual lexicon.
It ranks a bilingual lexicon according to the similarity measure given seed
translation pairs in a given domain.

First, we follow the steps described in [2] and extract a bilingual lexi-
con from Wikipedia. Wikipedia provides a vast number of named entities
and technical terms. Some articles are associated with interlingual links. An
interlingual link in Wikipedia is a link between two articles For example,
[[en:Manga]] points to the English version of the article “Manga,” which has
an outgoing link to the Japanese version [[ja:i2[#i]] (manga). Translations of a
page title (typically a noun phrase) are then given as the interlingual hyper-
links from that page. By taking the intersection of obtained list of translation
pairs in both directions ! one can obtain a large bilingual lexicon in reasonable

1Some page titles can not be translated back to their original ones (e.g. ambiguous words),
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Figure 6.1. Overview of extraction of a bilingual lexicon of a target domain
from Wikipedia

quality.

There are cases where a word has more than one sense. In such a case,
Wikipedia provides a special page called disambiguation to help disambiguate
word senses. One of the main problem in machine translation is to select
which word sense is appropriate for a given context. We assume the one sense
per domain hypothesis [56] by exploiting the fact that the distribution of word
senses is highly skewed depending on domains. According to the hypothesis,
the task of selecting the right sense is then to select the most relevant sense to
the given domain.

To calculate the relatedness of a translation pair to a given domain, we
manually prepare seed translation pairs from the domain and measure sim-
ilarity between a translation pair and the seeds. The similarity is computed
over a bipartite graph created from interlingual links and abstracts of Wikipedia?

and thus the two sets of translation pairs are not necessarily identical.
2 Abstracts are automatically generated by taking the first paragraph of each page. The
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(Plant, }&4)

organism
(Plant, T15)
fEE% (facilities)

(Library, R Z£E)

building
(Airport, ZE#)

Figure 6.2. Bipartite graph from Wikipedia link structure

Figure 6.2 illustrates a bipartite graph constructed from Wikipedia. In
this bipartite graph, related translation pairs tend to connect to similar set of
patterns (e.g. (Library, XI55£f) is more similar to (Plant, I.3}}) than (Plant,
%)) because they share two patterns, “fffiik” facilities (a term occurring in
Japanese abstract) and “building” (a term occurring in English abstract) ),
and vice versa.

The steps for constructing a bipartite graph is defined as follows:

1. Add translation pairs (en,ja) as white nodes.

2. Add bag-of-content words (hereafter referred to as patterns) appearing
in abstracts of both languages as black nodes. Note that a pattern may
be either single English or Japanese word.

3. Add edges from translation pairs to co-occurring patterns.

abstract file (abstract.xml) is distributed as part of dump files of Wikipedia database and can
be downloaded at http://download.wikimedia.org/.
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The intuition behind the bipartite graph construction is that if two trans-
lation pairs share similar patterns they must be related. In the experiment
below, we used pointwise mutual information defined in Section 3.2.3 as a
score of an edge weight between a translation pair and a pattern.

Second, we estimate similarity between translation pairs in a bilingual
lexicon by the regularized Laplacian described in Chapter 4. Hand-picked
translation pairs are used for the seed vector iy, and the pattern-instance co-
occurrence matrix M is constructed as in Figure 6.1. The final instance score
vector i is regarded as a vector representing the strength to the domain.

Seed translation pairs are expected to be the representative of the domain,
and thus should co-occur with domain-specific patterns. To fulfill this re-
quirement, frequent but unambiguous translation pairs should be carefully
selected.

6.2. Experiment

6.2.1 Corpus and Tools

We used the first Patent Parallel Corpus (PPC-1) from NTCIR-7 Patent Trans-
lation Task for the experiment. We only used Parallel Sentence Data (PSD).
The data is treated as a simple list of parallel sentences. No context and
structural information which could be obtained from the Parallel Patent Data
(PSD) is used.

The PSD of PPC-1 comes in four files: a training data file of about 1.8 mil-
lion parallel sentences train.txt and three development data files of about
a thousand parallel sentences {dev,devtest,test}.txt. We used train.txt
for training, dev.txt for parameter tuning, and test.txt for testing during
development.

We used an open source statistical machine translation system Moses® as
a baseline system for NTCIR-7. We basically followed the instructions written
at the homepage of WMT2008* to built the baseline system for their shared
task. We build the language model by using the SRI Language Modeling
Toolkit?.

3h’ttp: / /www.statmt.org/moses/
*http:/ /www.statmt.org/wmt08/
5 http:/ /www.speech.sri.com/projects/srilm/
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6.2.2 Preprocessing and Evaluation

English sentences are tokenized and lowercased by using tokenizer.perl and
lowercase.perl, the scripts provided by the WMT2008 organizers. As for
Japanese sentences, its encoding is first converted from EUC-JP to UTF-8 and
they are normalized under NFKC by using the Perl library. They are then
word segmented by using the open source Japanese morphological analyzer
MeCab®.

In normalization form NFKC, Compatibility Decomposition and Canoni-
cal Composition is performed to unicode string. In Japanese, it roughly means
double width alphabets and numbers are converted to single width, and sin-
gle width Katakanas are converted to double width.

Before building the translation model, long sentences with more than 80
words are removed by using the script clean-corpus-n.perl. This reduces
the number of training sentence pairs from 1,798,571 to 1,768,853. Both trans-
lation model and language model are made from the resulting bilingual sen-
tences pairs.

For English outputs, detokenization is done by the script detokenizer.perl.
Recaser is trained by using Moses from the English side of the training sen-
tences as described in the WMT2008 baseline system. BLEU score is computed
by the script doc_bleu.rb provided by the NTCIR-7 organizers.

6.2.3 Bilingual Lexicon Extraction

The use of a bilingual lexicon from Wikipedia described in Section 6.1 is
straightforward. We add the extracted bilingual lexicon to the training corpus
to learn the translation probability between translation pairs.”

A snapshot of Wikipedia was taken on 12 March 2008. The page titles are
aligned by interlingual hyperlinks and 222,739 translation pairs are extracted
in total. Non-Japanese nor English characters such as Arabic and Cyrillic are
removed. Most of the formatting information which is not relevant for the
current task are discarded. Eventually, 197,770 translation pairs are retained
for the full Wikipedia bilingual lexicon.

We randomly split the bilingual lexicon into 8 sub lexicons (due to memory
limits). 5 seeds are manually chosen for each sub lexicon (total 8 x 5 = 40

®http:/ /mecab.sourceforge.net/

’One of the common ways of using a dictionary in GIZA++ is to in-
clude it as additional training data. See articles in Moses mailing list
http:/ /article.gmane.org/gname.comp.nlp.moses.user/921 for detail.
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Table 6.1. Sample seed translation pairs

English Japanese
thermal spray atn)

epoxy A R
single crystal B

laser cooling L= —mH

centrifugal compressor a0 2

seeds). Sample seed translation pairs are displayed in Table 6.1.

After applying the regularized Laplacian kernel, the top 10%, 50% and
75% of the ranked list for each sub lexicon are collected. The intersection of
the 8 collected lists is the 10%, 50% and 75% bilingual lexicons, respectively.
Table 6.2 shows the number of translation pairs for each bilingual lexicon,
along with several examples (coverage of unknown words in the test corpus
is also shown in parenthesis).?

6.2.4 Results

Performance is evaluated based on BLEU (Bilingual Evaluation Understudy)
score [44]. BLEU algorithm uses n-gram overlaps between a candidate trans-
lation and a reference translation. It is a weighted precision to measure trans-
lation quality in terms of fluency and adequacy.

Table 6.3 presents BLEU scores for each translation direction for Patent
Translation Task at NTCIR-7. The results of adding Wikipedia as a bilingual
lexicon is shown. Wikipedia (10,50,75%) compares the effect of the graph-
based refinement of the bilingual lexicon. Formal run stands for intrinsic eval-
uation for the formal run which uses multiple reference sentences, while Sin-
gle reference uses the reference sentence distributed with the fmlrun-int dataset
to compute BLEU score.

8The total number of words for each ranked lexicon does not necessarily proportional to
the full Wikipedia since there are duplicates in the split sub lexicons.
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Table 6.2. Samples of the extracted bilingual lexicon from Wikipedia

Wikipedia

# of words

samples

10%

50%

75%

100%

filtered

11,970 (1.9%)

75,420 (7.7%)

113,277 (11.5%)

197,770 (13.5%)

24,969

(natural selection, H#Ri#E{REL), (scrabble, A7 7 7V)
, (phase transition, fH#£f%), (diamond, ' 4 7€ v F),
(videocassette recorder, £ 7 47— 7L 2 —7%)
(movement for multiparty democracy, #E0EHI RT3
FoiiE)), (fentanyl, 7 = » % =)L) [an opioid analgestic],
(sigma sagittarii, X > %) [the second brightest star sys-
tem in the constellation Sagittarius]), (shintaro abe, &
P AHE) [the former prime minister of Japan], (nippon
television, HA 7 L EJEGAEM)

(pride final conflict 2003, pride grandprix 2003 B
1) [a mixed martial arts event held by PRIDE Fight-
ing Championships], (uglyness, Bt), (palma il vecchio,
2Nz s A Jxy X A) [an Italian painter], (jean
gilles, ¥ ¥ ~ « ¥)l) [a French composer; a French sol-
dier], (amiloride, 7 32 7 A1 F) [a potassium-sparing
diuretic]

(brilliant corners, 77V Y 7~ kb + 2—7—X) [an album
by a jazz musician], (charly mottet > ¥ —Y — + €7)
[a French former professional cyclist], (deep purple in
rock, 74 =7+ X=7) + £~ - @ v 7) [an album by
an English rock band], (june 2003, "HaLo ik, 2003
£ 6 H) [navigational entry for events happened in June
2003], (moanin’, € — =) [a jazz album]

(1, 14) [year], (UTC+9, UTC+9) [Japanese side contains
only alphanumeric characters], (Aera, AERA) [case-
insensitive match] (KBS, KiBLHT) [garbage in En-
glish side], (image:himeji castle frontview.jpg, himeji
castle frontview.jpg) [Wikipedia format navigational
links], (user:eririnrinrin, eririnrinrin) [Wikipedia spe-
cific entries],
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Table 6.3. BLEU score for Patent Translation Task at NTCIR-7
Single reference  Formal run

JE EJ JE E]
baseline 26.39 2825 2534 27.19
Wikipedia (10%) — 2747 — —
Wikipedia (50%) — 2746 — @ —
Wikipedia (75%) — 27.42 — —

Wikipedia (100%) 26.48 2728 2548 28.15

6.3. Discussion

Table 6.3 demonstrates that the extracted bilingual lexicon slightly improves
BLEU score (0.09 for fmlrun-int and 0.14 for official) in Japanese to English
translation. However, adding the extracted bilingual lexicon constantly de-
grades BLEU score for fmlrun-int dataset in English to Japanese direction,
while it outperforms baseline in BLEU score by 1 for the official run. It is not
clear why the reported results are not consistent with the results of fmlrun-
int, and thus re-examination is needed to verify the efficiency of the proposed
method.

By comparing Wikipedia (75%,100%) and others, it is suggested that adding
the whole bilingual lexicon extracted from Wikipedia may be too noisy to
learn phrase alignments. One possibility is to extract only highly relevant
terms to the domain (at the expense of coverage), and another possibility is to
investigate better way to integrate a bilingual lexicon to phrase-based statisti-
cal machine translation.

In this chapter, we demonstrated that a large scale bilingual lexicon can
be extracted from Wikipedia. The bilingual lexicon may be improved in its
quality by a graph-based kernel. We have reported the results on NAIST-NTT
system for Patent Translation Task at NTCIR-7.

Although adding a dictionary to a training corpus has the advantage of
simplicity, it is not the best way to incorporate word sense disambiguation
into machine translation system. Carpuat et al. (2007) [12] showed that
reranking of the phrase table improves performance of statistical machine
translation. It is one of the future work to integrate graph-based word sense
disambiguation into statistical machine translation framework.

We have seen that we can create a graph from the interlink structure ex-
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tracted from Wikipedia. However, the performance of graph-based algorithms
depends on the structure of graph. In the next chapter, we investigate another
resource to build a graph structure suitable for knowledge acquisition with
graph kernels. We will see that by choosing appropriate source, importance-
based measure is enough for the task of semantic category acquisition. It is an
open question what resources are relevant for bilingual dictionary construc-
tion, especially in the context of web data mining.
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Learning Semantic Categories

Compared to other text resources, search queries more directly reflect search
users’ interests [52]. Web search logs are getting a lot more attention lately
as a source of information for applications such as targeted advertisement
and query suggestion. However, it may not be appropriate to use queries
themselves because query strings are often too heterogeneous or inspecific to
characterize the interests of the user population. Although it is not clear that
query logs are the best source of learning semantic categories, all the previous
studies using web search logs rely on web search query logs.

Therefore, we propose to use web search clickthrough logs to learn seman-
tic categories. The term semantic categories is used in prototype theory in the
field of cognitive linguistics. It is not a classical category defined in terms of
a necessary and sufficient condition. Rather, it is a gradable concept which
is characterized as a typical instance and relatedness to the instance. [48] For
instance, a typical instance for a semantic category of “bird” is a crow or a
sparrow whereas a peripheral instance would be an ostrich or a penguin. In
this way, the semantic category of “bird” is part of a gradable classification
system. For web search, it is important to learn a semantic category that
emerges everyday in search query logs.

We cast semantic category acquisition from search logs as the task of learn-
ing labeled instances from few labeled seeds. To our knowledge this is the first
study that exploits search clickthrough logs for semantic category learning.

There are many techniques that have been developed to help elicit knowl-
edge from query logs. These algorithms use contextual patterns to extract a
category or a relation in order to learn a target instance which belongs to the
category (e.g. cat in animal class) or a pair of words in specific relation (e.g.

59



CHAPTER 7. LEARNING SEMANTIC CATEGORIES

headquarter to a company). In this work, we focus on extracting named entities
of the same class to learn semantic categories.

Pasca and Durme [39] were the first to discover the importance of search
query logs in natural language processing applications. They focused on
learning attributes of named entities, and thus their objective is different from
ours. Another line of new research is to combine various resources such as
web documents with search query logs [40, 55]. We differ from this work in
that we use search clickthrough logs rather than search query logs.

Xu et al. (2009) [60] exploit search clickthrough logs to learn semantic
categories. However, they model clickthrough data with Latent Dirichlet Al-
location (LDA) [7] and use a label of semantic categories of seed instances as
training data to estimate semantic categories by probabilistic model.

Also, Li et al. (2008) [32] learn query intent from search clickthrough logs.
They build an instance similarity graph from search clickthrough logs and
use label propagation. However, they do not use graph Laplacian and their
task is different from ours.

As we have seen in Chapter 3, Tchai is dedicated to the task of semantic
category acquisition from search query logs. It achieves state-of-the-art per-
formance for this task, but it only uses web search query logs. Also, the Tchai
algorithm does not scale to large corpora.

Resource. Because web search queries are heterogeneous and highly am-
biguous, they do not necessarily reflect search users’ intent. Thus, it might be
inappropriate to use web search query logs as patterns. However, most of the
previous work uses web search query logs.

Scalability. Espresso-style algorithms including Tchai described in Chapter
3 need more than 8 parameters such as the number of seed instances, stopping
criterion, the number of instances and patterns to select on each iteration, and
so on, to calibrate. Moreover, because bootstrapping algorithms are sensitive
to these parameters [36], it is necessary to hand-tune optimal parameters to
apply to real tasks.

Therefore, we propose two solutions for each problem in this chapter.

Exploiting search clickthrough logs. First, we tackle the problem of resource
by using search clickthrough logs instead of search query logs. Joachims [25]
developed a method that utilizes clickthrough logs for training ranking of
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search engines. A search clickthrough is a link which search users click when
they see the result of their search. The intentions of two distinct search queries
are likely to be similar, if not identical, when they have the same clickthrough.
Search clickthrough logs are thus potentially useful for learning semantic cat-
egories. Clickthrough logs have the additional advantage that they are avail-
able in abundance and can be stored at very low cost.! Our proposed method
employs search clickthrough logs to improve semantic category acquisition in
both precision and recall.

Semi-supervised learning with Laplacian label propagation. Second, we
solve the problem of scalability by applying Laplacian label propagation de-
scribed in Section 4.2.3 to the task of semantic category acquisition. Laplacian
label propagation reduces 8 parameters of Tchai to only 1 parameter (diffusion
factor) while achieving comparative accuracy. Graph-based methods such as
label propagation have additional advantage that they are easy to apply dis-
tributed computing. Thus, graph-based methods are desirable to the task of
mining semantic knowledge from search clickthrough logs since clickthrough
logs tend to be very sparse.

As far as we know, we are the first to exploit search clickthrough logs by
using the regularized Laplacian for the task of semantic category acquisition.

7.1. Quetchup Algorithm

In this section, we describe an algorithm for learning semantic categories from
search logs using label propagation. We name the algorithm Quetchup.

Label propagation methods process an instance similarity matrix A. It is
not unusual to deal with more than 10 millions of magnitude of instances
when we extract semantic knowledge from web resources. However, a typical
configuration of workstations which have few gigabytes can only perform
the eigenvalue decomposition of a matrix of size not more than several tens
of thousands, and it is not possible to handle large scale data unless some
dimension reduction technique is used. Therefore, it is necessary to manage
large scale data efficiently.

1As for data availability, MSN Search query logs (RFP 2006 dataset) were pro-
vided to WSCD09: Workshop on Web Search Click Data 2009 participants. http://
research.microsoft.com/en-US/um/people/nickcr/WSCD09/
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7.1.1 Reducing Data Size

First, similarity matrix A is a dense matrix which requires the size of O(n?)
storage, and it is unrealistic to hold it when the similarity matrix is large.
For instance, suppose we hold similarity information in 4 bits. Even so, it
can only afford a matrix of size no more than hundreds of thousands with
16 gigabytes of memory, which is not realistic setting nowadays. Therefore,
we divide similarity matrix A into two components, A = WTW, and store
only instance-pattern matrix W to keep the size of data small. While A is
a dense matrix of n x n size, instance-pattern matrix W is a sparse matrix
which requires only the size of O(np) storage where p is the average number
of patterns per instance. Typically p is n > p and less than hundreds, so the
computation over the graph is manageable. 2

7.1.2 Approximating Label Propagation

As for computation, Laplacian label propagation involves singular value de-
composition and computes

Fr = g(oé(—ﬁ))tF(O) — (I+aL)"'F(0)

but the matrix inversion leads to O(n®) complexity, which is far from realistic
in real-world configuration. Nonetheless, it can be approximated by fixing the
number of steps for label propagation. The number of step t of label propaga-
tion corresponds to the length of paths from the current node to propagated
nodes. All the paths are taken into consideration as t increases, while only
neighbouring nodes are taken into account as t approaches 0. In particular,
t = 0 is a special case that using only seed labels for classification. Also,
t = 1 means propagating seed labels to instance nodes which co-occur with
the pattern nodes that occur with seed instances. In other words, it takes
second order co-occurrence into account.

There are two advantages in this approximation: (1) as we have just de-
scribed in this section, the computation of label propagation is reduced to
O(npt) complexity; and (2) it allows parallel and distributed computation of
label propagation using MapReduce [17]. A set of map and reduce operations
amounts to a single step of label propagation. The computation of a(—L)F(t)

2One can perform dimension reduction such as random projection to further compress the
size of data.

62



Category Seed

Travel jal (Japan Airlines), ana (All Nippon Airways), jr
(Japan Railways), U % 5 A (jalan: online travel guide
site), his (H.I.S.Co.,Ltd.: travel agency)

Finance A7 13817 (Mizuho Bank), =1 K47 (Sumitomo
Mitsui Banking Corporation), jcb, #4817 (Shinsei
Bank), B f#52%% (Nomura Securities)

Table 7.1. Seed terms for each category

to obtain F(t + 1) requires O(np). MapReduce allows this computation run
in parallel and the iteration process can be performed efficiently by storing £
in a local disk to exploit locality of disks.

One of the difficulties in applying the regularized Laplacian to the real
world tasks is that it is difficult to determine the amount of time necessary
for finding solutions. In practice, it hardly matters whether solutions are ap-
proximate (with guaranteed precision) or not. It is often preferable to have a
faster algorithm that returns solutions within a certain range, and MapReduce
meets this end.

7.2. Experiments with Web Search Logs

We will describe experimental results comparing a previous method Tchai
to the proposed method Quetchup with clickthrough logs (Quetchup;q) and
with query logs (Quetchupgyery)-

7.2.1 Experimental Settings

Search logs: We used Japanese search logs collected in August 2008 from
Yahoo! JAPAN Web Search. We thresholded both search query and click-
through logs and retained the top 1 million distinct queries. Search logs are
accompanied by their frequencies within the logs.

Construction of an instance-pattern matrix: We used clicked links as click-
through patterns. Links clicked less than 200 times were removed. After that,
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links which had only one co-occurring query were pruned. > On the other
hand, we used two term queries as contextual patterns. For instance, if one
has the term “singapore” and the query “singapore airlines,” the contextual
pattern “ff airlines” will be created. Query patterns appearing less than 100
times were discarded.

The (i,j)-th element of a row-normalized instance-pattern matrix W is
given by

|x;,pil
W = 2L,
U Yk X pil

Target categories: We used two categories, Travel and Finance, to compare
Quetchup with clickthrough and query logs against Tchai described in Chap-
ter 3.

When a query was a variant of a term or contains spelling mistakes, we
estimated original form and manually assigned a semantic category. We al-
lowed a query to have more than two categories. When a query had more
than two terms, we assigned a semantic category to the whole query taking
each term into account.*

System: We used the same seeds presented in Table 7.1 for both Tchai and
Quetchup. We used the same parameter for Tchai described in Chapter 3 and
collected 100 instances by iterating 10 times and extracting 10 instances per
iteration. The number of iteration of Quetchup is set to 10. The parameter «
is set to 0.0001.

Evaluation: It is difficult in general to define recall for the task of semantic
category acquisition since the true set of instances is not known. Thus, we
evaluated all systems using precision at k and relative recall [43].> Relative
recall is the coverage of a system given another system as baseline.
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06 fi

.
----
.................
"""""""
.....

~~.
LI

T — ; f""’éuetc.ﬁup (click) ——
h Quetchup (query) ===
I I I I I I ITChall I .....
10 20 30 40 50 60 70 80 90 100
Rank

Figure 7.2. Precision of Finance domain
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Figure 7.4. Relative recall of Finance domain
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7.2.2 Results

Figures 7.1 to 7.4 plot precision and relative recall for three systems to show
effectiveness of search clickthrough logs in improvement of precision and rel-
ative recall. Relative recall of Quetchup,;x and Tchai were calculated against
Quetchupgyery.-

Quetchup, i« gave the best precision among three systems, and did not
degenerate going down through the list. In addition, it was demonstrated that
Quetchup ;. gives high recall. This result shows that search clickthrough logs
effectively improve both precision and recall for the task of semantic category
acquisition.

On the other hand, Quetchupg,., degraded in precision as its rank in-
creased. Manual check of the extracted queries revealed that the most promi-
nent queries were Pornographic queries, followed by Food, Job and Housing,
which frequently appear in web search logs. Other co-occurrence metrics such
as pointwise mutual information would be explored in the future to suppress
the effect of frequent queries.

In addition, Quetchupj;x constantly outperformed Tchai in both the Travel
and Finance domains in precision and outperformed Quetchupquery in relative
recall. The differences between the two domains of query-based systems seem
to lie in the size of correct instances. The Finance domain is a closed set which
has only a few effective query patterns, whereas Travel domain is an open set
which has many query patterns that match correct instances. Quetchup,cx
has an additional advantage that it is stable across over the ranked list, be-
cause the variance of the number of clicked links is small thanks to the nature
of the ranking algorithm of search engines.

7.2.3 Mixing Clickthrough and Query Logs

In the experiment of Section 7.2.2, we make a matrix using both clickthrough
and query patterns. Instance-pattern matrices of clickthrough and query pat-
terns are normalized and mixed by a parameter g € [0, 1].

3Pruning facilitates the computation time and reduces the size of instance-pattern matrix
drastically.

4Since web search query logs contain many spelling mistakes, we experimented in a real-
istic configuration.

STypically, precision at k is the most important measure since the top k highest scored
terms are evaluated by hand.
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Winix = ,chlick + (1 - ,B)unery

where W,,;, is also a row-normalized instance-pattern matrix. Similarity ma-
trix A, using clickthrough and query patterns is given as follows:
Amix - an;ixwmix-

The ratio of clickthrough and query logs, B, was changed from 0 to 1 by
0.2. B = 0.2 means that to the ratio of clickthrough:query is 2:8. Also, relative
recall of Quetchup (click) and Tchai was calculated against Quetchup (query).

Figures 7.5 and 7.6 show that when the ratio of clickthrough logs are high,
precision and relative recall increase. The system using only clickthrough logs
give the best precision. The line “click:query=100:0" in Figure 7.6 indicates
that relative recall of Quetchup (click) is 1.5-2 times higher than the system
using query logs, and confirms that clickthrough logs not only gives high
precision but also high recall.

7.2.4 Extracted Instances and Patterns

Table 7.2 displays the instances and patterns that had the top 10 highest scores
to show characteristics for search query and clickthrough logs.

Thanks to clickthrough logs, Quetchup, i« succeeded to learn language
variations and spelling mistakes as well as semantic categories. The reason
behind this is that search engines are so robust to language variations and
spelling mistakes that they can assign high ranks to relevant pages to a query.

On the other hand, label propagation with search query learned various
queries other than synonyms, at the cost of irrelevant queries such as “ad-
box” and “7 % 2 £,” and both precision and relative recall fell down.

Table 7.3 classifies random sampled 100 instances from the 10,000 highest
scored queries using the top 10 million clickthrough logs.

Over the half of the queries, the most frequent queries are the queries
related to transportation. This seems because three out of five seed queries
are related to transportation, and thus tend to extract queries related to this
type.

The next frequent queries are related to accommodation and travel infor-
mation. Label propagation succeeds to learn them without providing seed
queries for these types.
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Figure 7.6. Recall of Quetchup with various Click:Query ratio
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Table 7.2. Extracted Instances and Patterns with Top 10 Highest Scores

system

instance

pattern (leading http:// was
omitted)

Quetchup U % 5 A fHiH (jalan accommodation),

(click)

U% 7 ¥ (jalan), ¥ ¥ 7 ~ (jalan), jarann,
jaran, C % 5 A net (jalan.net), jalan, U
@ 5 A (julan), ana F#J (ana reserva-
tion), ana.co.jp

www jalan.net/,
www.ana.co.jp/, www.his-
j.com/ www jreast.co.jp/,
www.jtb.co.jp/,
www.jtb.cojp/ace/,
www.westjr.co.jp/,
www.jtb.co.jp/kaigai/,
nippon.his.co.jp/,
www.jr.cyberstation.ne.jp/

Quetchup 8% (Traveling from Midland), his

(query)

BIVE (his Kansai), f+FEE (Theya Is-
land), &7V a v F % & VKR (Ho-
tel Continental Yokohama), {JA U \>®
# (Genjii-no-mori; spa), 7<% 7 7Y
»3— 7 (Fuji Safari Park), ad-box, 7%
2 $ (adacomi; offensive), A 4 A F— LA
(SkyTeam), / — A7 = A b (Northwest)

f Ri%l3 (timetable), # W
k1T (domestic tour), # fid
A (accommodation), £ AtfEFiE
(Hokkaido), # BVt (Kansai),
JUM (Kyushu), ¢ v A4 L —¥
(mileage), § #til& (Nagoya), ¢
il (Okinawa), £ fii % (spa)

Tchai
(1st
iter.)

ith, B, WiZel, 4 HZ%E, AT, M2,
ISR, AT, S 2, jr o A

i GV 1% S B o GV L
BEY, g duiE, f v e 7y T
YIS T IV RRY Y 7,4
bEeA 77—, § AHAAX—F, 11§
WHRIE, § a5

Tchai
(10th
iter.)

Bk N A (Seitetsu Bus), FH#K/ N R
(Sotetsu Bus), B YA (Hakodate
Bus), KB T #k (Osaka subway), %
# (Kotoden railways), i #kfHl 4 i
M (Subway Midosuji Line), Zf/3 2
(Geiyo Bus), #15H{K/Y A (Shin-keisei
Bus), jr B HI## (Japan Railways Hanna
Line), #### (Joban Line)

# A2, § #EFRIX] (route map),
T (fare), § Bl (fare), # &M
(season ticket), # JHITIRDL (ser-
vice situation), f B&#R (route),
EHAf (season ticket fare), f iE
1125 (season ticket), f R¢Xl
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Table 7.3. Random samples from extracted instances

type ff instance

Transportation 54 Ak BEEfE (Hiroshima Super Express), BUffiEfit
(Tokaido Line), jr flkH#% (JR Tida Line), jr %% (JR
Hakata), 5{# ¥R (Kyoto Super Express)

Accommodation 10 &7V E—+ A (Hotel Venus), YV —Au A ¥ILFK
7 VKB (Rihga Royal Hotel Osaka), www.route-
inn.cojp, &7 NVEKL = N=H )L+ > 7 1 (Hotel
Keihan Universal City), L4 HZ2+ 7L (ANA
Hotel Sapporo)

Travel information 10 4} %4 (Foreign Ministry safety), 77 v k<
av 7" KB (ticket shop Osaka), @Bt BPE (Sight
seeing Kansai), LB % (Takayama Tourism
Association), 7'— 7"V + E (Google navi)

Travel agent 6 jr 8T % v I (Odekake net), i — (Kinki
Tourist), # £ v 7 A #if] (Tabix Shizuoka), 7 L v
J AA v ¥ —F 3 aF ) (Flex International), %V
% 7 — (Orion Tour)

Travel misc. 2 7'va 77 (Proteca; bag for travel), jal fiiT{H3EH
(JAL Travel Club)
Others 20 HF&ZWIZEF 7 v b S (discount flight ticket over-

seas), FHEEME T HIRDL (Super express reservation
situation), HriEf FZIZ (Super express timetable),
lii SR 16 (spa accommodation), #Hrigf {5 HER (Su-
per express stops), & (tiger), youtubu g5} F 7 <
(overseas drama), EB5EERH] (legal department re-
cruitment), ¥ { h * & (Okuribito; film), #h4 AN¥f
BK (amateur baseball)
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Figure 7.7. Effect of corpus size to precision

Also, 20% of the system output did not contain any named entities, but
1/4 of them were navigational queries® related to travel. We can conclude
that only about 20% of the learned queries are out of domain even when we
extract 10,000 queries, and the proposed system learns not only synonyms
and spelling variations but also varieties of subtypes of semantic categories in
high precision.

7.2.5 Comparison between Data Size

Figure 7.7 plots precision of the Quetchup algorithm varying the size of the
corpus to see the learning curve. We used the top 0.1, 1 and 10 millions
frequent search clickthrough logs.

Compared to small amount of data, large amount of data improved pre-
cision. It seems that search clickthrough logs are sparser than search query
logs, and the more available data the denser a clickthrough graph becomes.

®A navigational query is the one that has a unique satisfactory page [11]. e.g. “YouTube”
to http:/ /www.youtube.com/.
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Figure 7.8. Effect of a to precision

When an instance-pattern graph is dense there are more nodes which can be
reached from seed instances.

7.2.6 Performance with Varying Diffusion Factor

Figure 7.8 shows precision of the Quetchup algorithm with varying diffusion
factor a, which controls how important labeled instances are. We only present
the result of « = 0.2 because the results remain almost the same with any
other values larger than 0.2. It is expected that if « is small label propagation
tends to a relatedness measure and semantic drift will not occur, whereas if «
is large it over-emphasize graph structure and semantic drift will occur.
However, from the experiment, Quetchup with large « achieves higher pre-
cision than that with small «. This counter-intuitive result can be explained in
terms of the graph structure of clickthrough logs. The reason seems that the
bipartite graph using clickthrough logs is sparser than the graph using query
logs, and the latter may contain erroneous edges due to insufficient infor-
mation provided to search users. Densely connected components of graphs
using clickthrough logs thus captures importance in Travel domain since click-
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through logs reflect actual search users’ behaviour.

In fact, queries used as seed instances are ranked jr (43), U ® 5 A (378) ,
ana (755), jal (904), his (1362) when a = 0.8. As you can see, seed instances are
not necessarily ranked high. Therefore, semantic drift takes place if diffusion
factor is large; however, it may not degenerate precision. This means that the
seed instances used for this dataset was not the best seed instances for the
target semantic category.

7.3. Discussion

We have proposed a method called Quetchup to learn semantic categories
from search clickthrough logs using Laplacian label propagation. The pro-
posed method greatly outperforms previous method, taking the advantage of
search clickthrough logs.

The main issue in graph-theoretic minimally-supervised learning lies in
the way how to create co-occurrence (or similarity) graph. It is not trivial
to obtain a good graph structure for knowledge acquisition. Not only “re-
latedness” metric but also “importance” metric can be exploited in natural
language processing tasks if one finds an effective graph for a certain appli-
cation.
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Conclusion

This work gives a graph-based analysis of semantic drift in Espresso-like boot-
strapping algorithms. We indicate that semantic drift in bootstrapping is a
parallel to topic drift in HITS. We confirm that the von Neumann kernels and
the regularized Laplacian reduce semantic drift in the tasks of word sense
disambiguation, bilingual dictionary construction and semantic category ac-
quisition. Our proposed methods have only one parameters and are easy to
calibrate.

Mutual exclusion bootstrapping [16] uses manually specified instances
causing semantic drift (stop class) to achieve bootstrapping in high preci-
sion. Because we know that the cause of semantic drift has the same root as
topic drift in link analysis, we would automatically extract stop class from a
patter-instance co-occurrence matrix without any supervision. Along with a
recently proposed method to select seed instances [59], we can further reduce
the cost of human annotation in bootstrapping algorithms.

As we have seen in Section 5.4, the deficiency of the von Neumann kernel
to the regularized Laplacian is the sensitivity to diffusion factor. Recently,
Kunegis et al. (2009) [30] propose an automatic way to tune parameters for
graph kernels including the von Neumann kernel and the regularized Lapla-
cian. Thanks to the graph-theoretic foundation of these kernels, we can apply
the automatic parameter tuning method to our tasks. This could not be done
with heuristic-based bootstrapping algorithms.

Beside the regularized Laplacian, many other kernels based on the eigen-
value regularization of the Laplacian matrix have been proposed in machine
learning community [29, 34, 49]. One such kernel is the commute-time kernel
[49] defined as the pseudo-inverse of Laplacian. Despite having no parame-
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ters at all, it has been reported to perform well in many collaborative filtering
tasks [21]. We plan to test these kernels in our task as well.

There still remains several topics to explore. We will leave the following
questions open to future work.

First, we have not investigated the effect of seed instances to the perfor-
mance of bootstrapping. It is known that seed instances affect the quality
of bootstrapping [59] and we are not completely free from selecting “good”
seeds, unless some conditions are met [18]. It is not yet clear whether prototype-
based seed selection is appropriate for the task of semantic category acquisi-
tion. One alternative is to use basic level category [48] for a seed selection
criterion. It is an open question what properties effective seeds share, and
how to find those seeds.

Second, even though we tackled several task of bootstrapping algorithms,
we have not formulated the problem of bootstrapping algorithms in terms of
learning from patterns as seeds. Just like Hearst (1992) [23] starts from several
seed patterns to learn hyponym relations, we could define the problem of
bootstrapping algorithms to learn from seed patterns as well.

Third, it is not well studied how we can create effective graphs for NLP
tasks. Although pointwise mutual information based co-occurrence metrics
are used for Espresso-style algorithms, it may not be an optimal co-occurrence
metric. Recently, Joachims (2002) [25] proposed a method for learning to rank
using clickthrough data. Bai et al. (2009) [4] adapted a similar method to
learn semantic similarity in a supervised manner. It might be worthwhile to
perform supervised metric learning to generate an appropriate graph to the
task at hand.

Finally, we could further investigate other semi-supervised learning tech-
niques such as co-training [8]. As we have described in this thesis, self-
training can be thought of a graph-based algorithm. It is also interesting
to analyze how co-training is related to the proposed algorithm.

This thesis provides graph-theoretic approaches to natural language pro-
cessing, dedicated to computational semantics. We are in the middle of tran-
sition from fully-supervised shallow natural language processing to semi-
supervised deep natural language learning, with the help of large-scale web
as a corpus and abundant implicit feedbacks from users as cheap supervision.
We are to bridge the gap between natural language processing and natural
language learning towards the goal of understanding the source of meaning.
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