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Abstract

In recent years, pre-trained models have been extensively studied, and several
downstream tasks have benefited from their utilization. In this study, we develop
the Chinese GEC models based on Transformer with a pre-trained model using
two methods: first, by initializingthe encoder with the pre-trained model (BERT-
encoder); second, by utilizing the technique proposed by Zhu et al. (2020), which
uses the pre-trained model for additional features (BERT-fused). On the Natural
Language Processing and Chinese Computing (NLPCC) 2018 Grammatical Error
Correction shared task test set, our single models obtain F0.5 scores of 33.66
and 30.63 respectively, which is higher than the performance of ensemble models
developed by the top team of the shared task. Moreover, using a 4-ensemble
model, we obtain an F0.5 score of 37.47, which is a state-of-the-art result of the
task. We annotate the error types of the development data; the results show
that word-level errors dominate all error types, and sentence-level errors remain
challenging and require a stronger approach.
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1 Introduction

Grammatical error correction (GEC) can be regarded as a sequence-to-sequence
task. GEC systems receive an erroneous sentence written by a language learner
and output the corrected sentence. In previous studies that adopted neural mod-
els for Chinese GEC (Ren et al., 2018; Zhou et al., 2018), the performance was
improved by initializing the models with a distributed word representation, such
as Word2Vec (Mikolov et al., 2013). However, in these methods, only the embed-
ding layer of a pre-trained model was used to initialize the models.
In recent years, pre-trained models based on Bidirectional Encoder Represen-

tations from Transformers (BERT) have been studied extensively (Devlin et al.,
2019; Liu et al., 2019), and the performance of many downstream Natural Lan-
guage Processing (NLP) tasks has been dramatically improved by utilizing these
pre-trained models. To learn existing knowledge of a language, a BERT-based
pre-trained model is trained on a large-scale corpus using the encoder of Trans-
former (Vaswani et al., 2017). Subsequently, for a downstream task, a neural
network model is initialized with the weights learned by a pre-trained model that
has the same structure and is fine-tuned on training data of the downstream
task. Using this two-stage method, the performance is expected to improve be-
cause downstream tasks are informed by the knowledge learned by the pre-trained
model.
Recent works (Kaneko et al., 2020; Kantor et al., 2019) show that BERT helps

improve the performance on the English GEC task. As the Chinese pre-trained
models are developed and released continuously (Cui et al., 2020; Zhang et al.,
2019), the Chinese GEC task may also benefit from using those pre-trained mod-
els.
In this study, as shown in Figure 1.1, we develop a Chinese GEC model based

on Transformer with a pre-trained model using two methods: first, by initializing
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Figure 1.1: Two methods for incorporating a pre-trained model into the GEC
model.

the encoder with the pre-trained model (BERT-encoder); second, by utilizing
the technique proposed by Zhu et al. (2020), which uses the pre-trained model
for additional features (BERT-fused); on the Natural Language Processing and
Chinese Computing (NLPCC) 2018 Grammatical Error Correction shared task
test dataset (Zhao et al., 2018), our single models obtain F0.5 scores of 33.66
and 30.63 respectively, which is higher than the performance of ensemble models
developed by the top team of the shared task. Moreover, using a 4-ensemble
model, we obtain an F0.5 score of 37.47, which is a state-of-the-art result of the
Chinese GEC task. We also annotate the error types of the development data; the
results show that word-level errors dominate all error types, and sentence-level
errors remain challenging and require a stronger approach.
This thesis is organized into the following chapters. Chapter 2 describes the

background knowledge of the encoder-decoder model, the Transformer model
and the pre-trained model. Chapter 3 provides an overview of the related works.
Chapter 4 describes how we construct our Chinese grammatical error correction
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models. Chapter 5 describes the experimental settings, the evaluation results, and
the comparison with previous works. Chapter 6 provides the sample sentences of
our model and the analysis of error types. Chapter 7 concludes the thesis.
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2 Background of
Encoder-Decoder, Transformer
and BERT

In this chapter, we will simply introduce the core mechanisms of the encoder-
decoder models, the Transformer model and the BERT model.

Figure 2.1: The model state when decoder outputs the token 钢笔.

2.1 Encoder-Decoder Models
There are many NLP tasks that can be treated as a sequence-to-sequence prob-
lem. For example, in machine translation tasks, the input is a sentence of source
language, and the output is a sentence of target language. And in question an-
swering tasks, the input is a sentence of question, and the output is a sentence
of answer. The encoder-decoder models are designed to solve these sequence-
to-sequence problems. Sutskever et al. (2014) constructed the encoder-decoder
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using Recurrent Neural Network (RNN). The encoder receives a source sequence
and encodes it from left to right. The last hidden state of the encoder is used as
a context vector. Then the decoder outputs the tokens of the target sequence one
by one according to the context vector and hidden states of words that have been
output by decoder. Take the neural machine translation (NMT) as an example:
Assume that we want to translate the English sentence I have a pen into the Chi-
nese sentence 我 有 一支 钢笔. The decoder outputs the token 钢笔 according
to the context vector (i.e. the hidden state of pen) and the hidden state of token
一支 (illustrated in Figure 2.1).

Figure 2.2: The model state when decoder outputs the token 钢笔. The lines
between context vector and each token in encoder represent the at-
tention.

Since the encoder-decoder models need to compress all information from the
source sequence, it is difficult for RNN to encode long sequences. To solve this
problem, Bahdanau et al. (2015) proposed the attention mechanism. This mech-
anism is based on a concept that when humans output each token in the target
sequence, they concentrate on the different parts of the source sequence. Consider
the NMT example again. When we output the token 钢笔 (which means pen in
English) of the target sequence, it is natural to concentrate more on the token
pen. And the attention is a score that represents how well the two tokens match.
For example, the attention score for the token pair (pen, 钢笔) should be higher
than other (source-token, 钢笔) pairs (illustrated in Figure 2.2). By doing so,
the context vector changes dynamically, and hence the decoder can concentrate
on different parts of the source sequence when outputs each token of a target
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sequence.

2.2 Transformer
The RNN models are restricted by the sequential computation: the RNN pro-
cesses the sentence from left to right, and the hidden states of words depend on
the previous hidden state. This sequential nature precludes parallelization within
training examples, especially for long sequences. Considering this inherent na-
ture of RNN, Vaswani et al. (2017) developed a encoder-decoder model called
Transformer based solely on attention mechanism instead of complex RNN that
were broadly adopted by previous encoder-decoder models. The Transformer al-
lows for more training parallelization, and can capture the global dependencies
efficiently.
There are three kinds of attention mechanisms in Transformer: self-attention

for the encoder, self-attention for the decoder, and encoder-decoder attention.

• Self-attention for the encoder is based on a concept that we should refer
to other parts of the sentence when we encode a token of the sentence.
Consider the example I have a pen again. When we encode the token pen,
except the token itself, we concentrate more on the token a than other
tokens because the token a is the article that modifies pen, hence they have
stronger relation than others (illustrated in Figure 2.3).

• The only difference between self-attention for the decoder and for the en-
coder is that when we output the current token, tokens after the current
token should be masked in training because, in a practical scene, the model
outputs the target sequence from left to right and the model does not receive
the information from the right side of the current token.

• The encoder-decoder attention is just as we mentioned in section 2.1.
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Figure 2.3: The self-attention when encodes the token pen. The curves represent
attention.

2.3 BERT
BERT is a pre-trained model developed by Devlin et al. (2019) using the encoder
side of the Transformer.
The main goal of training a pre-trained model is to learn existing knowledge

of a language and the downstream tasks can benefit from this knowledge. The
pre-trained model is first trained on a large-scale corpus using pre-training tasks.
Subsequently, for a downstream task, a neural network model is initialized with
the weights learned by a pre-trained model that has the same structure and is
fine-tuned on training data of the downstream task. Using this two-stage method,
the performance is expected to improve because downstream tasks are informed
by the knowledge learned by the pre-trained model.
Devlin et al. (2019) designed two pre-training tasks for BERT: The first one

is the Masked Language Model (MLM) task, which is inspired by the cloze task.
In the MLM task, some tokens in a sentence are replaced with masked tokens
([MASK]), and the model has to predict the replaced tokens. Unlike previous
works, they do not use unidirectional pre-training tasks because they argue that
bidirectional tasks can receive information from both left and right sides hence
can capture the context more efficiently. The second one is the Next Sentence
Prediction (NSP) task. This task is designed to train a model that understands
sentence relationships. The model takes sentence A and sentence B as an input
and then it predicts whether sentence B is the next sentence of A or not.

7



3 Related Works of GEC

In this chapter, we will introduce previous works of Chinese GEC, and English
GEC which utilize BERT.

3.1 Chinese Grammatical Error Correction
Given the success of the shared tasks on English GEC at the Conference on
Natural Language Learning (CoNLL) (Ng et al., 2013, 2014), a Chinese GEC
shared task was performed at the NLPCC 2018. In this task, approximately
one million sentences from the language learning website Lang-8∗ were used as
training data and two thousand sentences from the PKU Chinese Learner Corpus
(Zhao et al., 2018) were used as test data. Here, we briefly describe the three
methods with the highest performance.
First, Fu et al. (2018) combined a 5-gram language model-based spell checker

with subword-level and character-level encoder-decoder models using Transformer
to obtain five types of outputs. Then, they re-ranked these outputs using the
language model. Although they reported a high performance, several models
were required, and the combination method was complex.
Second, Ren et al. (2018) utilized a convolutional neural network (CNN), such

as in Chollampatt and Ng (2018). However, because the structure of the CNN is
different from that of BERT, it cannot be initialized with the weights learned by
the BERT.
Last, Zhao andWang (2020) proposed a dynamic masking method that replaces

the tokens in the source sentences of NLPCC 2018 Grammar Error Correction
shared task training data with other tokens (e.g. [PAD] token). They achieved

∗https://lang-8.com/
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comparatively high results on the shared task without using any extra knowledge.
This is a data augmentation method that can be a supplement for our study.

3.2 English Grammatical Error Correction
Using BERT

In Building Educational Applications (BEA) 2019 English Grammatical Error
Correction Shared Task (Bryant et al., 2019), several teams attempted to incor-
porate BERT into their correction models.
Kaneko et al. (2019) first fine-tuned BERT on a learner corpus and then incor-

porated the word probability provided by BERT into re-ranking features. Using
BERT for re-ranking features, they obtained an approximately 0.7 point improve-
ment of the F0.5 score.
Kantor et al. (2019) used BERT to solve the GEC task by iteratively querying

BERT as a black box language model. They added a [MASK] token into source
sentences, and predicted the word represented by the [MASK] token. If the word
probability predicted by BERT exceeded the threshold, the word was output as
a correction candidate. Using BERT, they obtained a 0.27 point improvement of
the F0.5 score.
Kaneko et al. (2020) first fine-tuned BERT using a Grammatical Error Diag-

nosis task, and then incorporated the fine-tuned BERT into the correction model
by using method proposed by Zhu et al. (2020). They showed the effectiveness
of BERT on the English GEC task, and achieved comparatively high results.
These studies show that BERT helps improve the performance of a correction

model; however, this improvement was marginal, and they did not explore the
use of pre-trained models for weight initialization.
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4 Method of Incorporating the
Chinese Pre-trained Model
into GEC Model

In this chapter, we will describe the details of the Chinese pre-trained Model
used in this work, and the two methods about how we incorporate the Chinese
pre-trained Model into our GEC models.

4.1 Chinese Pre-trained Model
In this study, we use the Chinese-RoBERTa-wwm-ext model provided by Cui
et al. (2020), which is a BERT-based pre-trained model. The main differences
between Chinese-RoBERTa-wwm-ext and original BERT are as follows:

• Whole Word Masking (WWM): Devlin et al. (2019) proposed a new
masking method called Whole Word Masking (WWM)∗ after proposing
their original BERT, which masks entire words instead of subwords. They
demonstrated that the original prediction task that only masks subwords is
easy and that the performance has been improved by masking entire words.
Therefore, Cui et al. (2020) adopted this method to train their Chinese
pre-trained models. In WWM, when a Chinese character is masked, other
Chinese characters that belong to the same word should also be masked.
Table 4.1 shows an example of WWM.

• Training Strategy: Cui et al. (2020) followed the training strategy studied
by Liu et al. (2019). Although Cui et al. (2020) referred to the training

∗https://github.com/google-research/bert
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[Source Sentence]
然后 准准准备备备 别 的 材材材料料料 。

[Original BERT]
然 后 准准准 [MASK] 别 的 [MASK] 料料料 。
[Whole Word Masking]
然 后 [MASK] [MASK] 别 的 [MASK] [MASK] 。
[English Translation]
Then prepare for other materials.

Table 4.1: Example of the difference between original BERT and Whole Word
Masking for Chinese sentences. The source sentence is segmented into
words, whereas in original BERT and whole word masking, the sen-
tence is segmented into characters.

strategy from Liu et al. (2019), there are still some differences between
them (e.g. they did not use dynamic masking).

• Training Data: In addition to Chinese Wikipedia (0.4B tokens) that was
originally used to train BERT, extended corpus (5.0B tokens), which con-
sists of Baidu Baike (a Chinese encyclopedia) and QA data, was also used.
Extended corpus has not been released due to a license issue.

4.2 Grammatical Error Correction Model
In this study, we use Transformer as the correction model. Transformer has shown
excellent performance in sequence-to-sequence tasks, such as machine translation,
and has been widely adopted in recent studies on English GEC (Kiyono et al.,
2019; Junczys-Dowmunt et al., 2018).
However, a BERT-based pre-trained model only uses the encoder of Trans-

former; therefore, it cannot be directly applied to sequence-to-sequence tasks
that require both an encoder and a decoder, such as GEC. Hence, we incorporate
the encoder-decoder model with the pre-trained model in two ways as described
in the following subsections.
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4.2.1 BERT-encoder
We initialize the encoder of Transformer with the parameters learned by Chinese-
RoBERTa-wwm-ext; the decoder is initialized randomly. Finally, we fine-tune the
initialized model on Chinese GEC data.

4.2.2 BERT-fused
Zhu et al. (2020) proposed a method that uses a pre-trained model as the ad-
ditional features. In this method, input sentences are fed into the pre-trained
model and the pre-trained model outputs the encoded vector representations.
Then, the representations from the pre-trained model will interact with the en-
coder and decoder by using attention mechanism. Kaneko et al. (2020) verified
the effectiveness of this method on English GEC tasks.
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5 Experiments

In this chapter, we will provide the details of our experiments and the comparison
with previous works.

5.1 Experimental Settings

5.1.1 Data
In this study, we use the data provided by the NLPCC 2018 Grammatical Error
Correction shared task. We first segment all sentences into characters because
the Chinese pre-trained model we used is character-based.
The training data consist of 1.2 million sentence pairs extracted from the lan-

guage learning website Lang-8.
Because the NLPCC 2018 Grammatical Error Correction shared task did not

provide development data, we opted to randomly extract 5,000 sentences from
the training data as the development data following Ren et al. (2018).
The test data consist of 2,000 sentences extracted from the PKU Chinese

Learner Corpus. According to Zhao et al. (2018), the annotation guidelines follow
the minimum edit distance principle (Nagata and Sakaguchi, 2016), which selects
the edit operation that minimizes the edit distance from the original sentence.

5.1.2 Model
We implement the Transformer model using fairseq 0.8.0.∗ and load the pre-
trained model using pytorch_transformer 2.2.0.†

We then train the following models based on Transformer.

∗https://github.com/pytorch/fairseq
†https://github.com/huggingface/transformers
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• Baseline: A plain Transformer model that is initialized randomly without
using a pre-trained model.

• BERT-encoder: The correction model introduced in Section 4.2.1.

• BERT-fused: The correction model introduced in Section 4.2.2. We use
the implementation provided by Zhu et al. (2020).‡

Finally, we train a 4-ensemble BERT-encoder model and a 4-ensemble BERT-
fused model.
More details on the training are provided in the Table 5.1.

5.1.3 Evaluation
As the evaluation is performed on word-unit, we strip all delimiters from the
system output sentences and segment the sentences using the pkunlp§ provided
in the NLPCC 2018 Grammatical Error Correction shared task.
Based on the setup of the NLPCC 2018 Grammatical Error Correction shared

task, the evaluation is conducted using MaxMatch (M2).¶ The MaxMatch algo-
rithm computes the phrase-level edits between the source sentence and the system
output. Then it finds the overlaps between the system edits and gold edits.

5.2 Evaluation Results
Table 5.2 summarizes the experimental results of our models. We run the single
models four times, and report the average score. For comparison, we also cite the
best single model result of Zhao and Wang (2020) and the results of the mod-
els developed by two teams in the NLPCC 2018 Grammatical Error Correction
shared task.
The performances of BERT-encoder and BERT-fused are significantly superior

to that of the baseline model and are comparable to those achieved by the two

‡https://github.com/bert-nmt/bert-nmt
§http://59.108.48.12/lcwm/pkunlp/downloads/libgrass-ui.tar.gz
¶https://github.com/nusnlp/m2scorer
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teams in the NLPCC 2018 Grammatical Error Correction shared task, indicating
the effectiveness of adopting the pre-trained model.
The BERT-encoder (4-ensemble) model yields an F0.5 score nearly 7 points

higher than the highest-performance model in the NLPCC 2018 Grammatical
Error Correction shared task. However, there is no improvement for the BERT-
fused (4-ensemble) model compared with the single BERT-fused model. We find
that the performance of the BERT-fused model depends on the warm-up model.
Compared with Kaneko et al. (2020) using a state-of-the-art model to warm-up
their BERT-fused model, we did not use a warm-up model in this work. The
performance noticeably drops when we try to warm-up the BERT-fused model
from a weak baseline model, therefore, the BERT-fused model may perform better
when warmed-up from a stronger model (e.g., the model proposed by Zhao and
Wang (2020)).
For Zhao and Wang (2020), they achieved best recall and comparatively high

F0.5 score using single model.
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Baseline
Architecture Encoder (12-layer), Decoder (12-layer)
Learning rate 1 × 10−5

Batch size 32
Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1 × 10−8)
Max epochs 20
Loss function cross-entropy
Dropout 0.1
BERT-encoder
Architecture Encoder (12-layer), Decoder (12-layer)
Learning rate 3 × 10−5

Batch size 32
Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1 × 10−8)
Max epochs 20
Loss function cross-entropy
Dropout 0.1
BERT-fused
Architecture Transformer (big)
Learning rate 3 × 10−5

Batch size 32
Optimizer Adam (β1 = 0.9, β2 = 0.98, ε = 1 × 10−8)
Max epochs 20
Loss function label smoothed cross-entropy (εls = 0.1)
Dropout 0.3

Table 5.1: Training details for each model.
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[Our models] Precision Recall F0.5

Baseline 25.14 14.34 21.85
BERT-encoder 39.78 20.84 33.66
BERT-fused 36.91 18.23 30.63
BERT-encoder (4-ensemble) 47.20 20.54 37.47
BERT-fused (4-ensemble) 38.29 17.55 30.97
[Best Single Model]
Zhao and Wang (2020) 44.36 22.18 36.97
[NLPCC 2018]
Fu et al. (2018) 35.24 18.64 29.91
Ren et al. (2018) 41.73 13.08 29.02
Ren et al. (2018) (4-ensemble) 47.63 12.56 30.57

Table 5.2: Experimental results on the NLPCC 2018 Grammatical Error Correc-
tion shared task.

17



6 Analysis of System Outputs
and Error Types

In this chapter, we will analyze the system outputs and error types, provide the
performance of our models on each error type.

6.1 System Outputs
Table 6.1 shows the sample outputs.

src 持持持 别别别 是 北京 ， 没有 “ 自然 ” 的 感觉 。
gold 特特特别别别 是 北京 ， 没有 “ 自然 ” 的 感觉 。

baseline 持持持 别别别 是 北京 ， 没有 “ 自然 ” 的 感觉 。
BERT-encoder 特特特别别别 是 北京 ， 没有 “ 自然 ” 的 感觉 。
Translation Especially in Beijing, there is no natural feeling.

src 人们 在 一 辈子 经经经验验验 很多 事情 。

gold 人们 在 一 辈子 经经经历历历 很多 事情 。

baseline 人们 在 一辈子 经经经历历历 了 很多 事情 。

BERT-encoder 人们 一辈子 会会会 经经经历历历 很多 事情 。

Translation People experience many things in their lifetime.

Table 6.1: Source sentence, gold edit, and output of our models.

In the first example, the spelling error 持别 is accurately corrected to 特别
(which means especially) by the proposed model, whereas it is not corrected by
the baseline model. Hence, it appears that the proposed model captures context
more efficiently by using the pre-trained model through the WWM strategy.
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In the second example, the output of the proposed model is more fluent, al-
though the correction made by the proposed model is different from the gold edit.
The proposed model not only changed the wrong word经验 (which usually means
the noun experience) to经历 (which usually means the verb experience), but also
added a new word 会 (would, could); this addition makes the sentence more flu-
ent. It appears that the proposed model can implement additional changes to
the source sentence because the pre-trained model is trained with a large-scale
corpus. However, this type of change may affect the precision because the gold
edit in this dataset followed the principle of minimum edit distance (Zhao et al.,
2018).

6.2 Error Types
To understand the error distribution of Chinese GEC, we annotate 100 sentences
of development data and obtain 130 errors (one sentence may contain more than
one error). We refer to the annotation of the HSK learner corpus∗ and adopt
five categories of error: B, CC, CQ, CD, and CJ. B denotes character-level er-
rors, which are mainly spelling and punctuation errors. CC, CQ, and CD are
word-level errors, which are word selection, missed word, and redundant word er-
rors, respectively. CJ denotes sentence-level errors which contain several complex
errors, such as word order and lack of subject errors. Several examples are pre-
sented in Table 6.2. Based on the number of errors, it is evident that word-level
errors (CC, CQ, and CD) are the most frequent.
Table 6.3 lists the detection and correction results of the BERT-encoder and

BERT-fused models for each error type. The two models perform poorly on
sentence-level errors (CJ), which often involve sentence reconstructions, demon-
strating that this is a difficult task. For character-level errors (B), the models
achieve better performance than for other error types. Compared with the correc-
tion performance, the systems indicate moderate detection performance, demon-
strating that the systems address error positions appropriately. With respect
to the difference in performance of the two systems on each error type, we can
conclude that BERT-encoder performs better on character-level errors (B), and

∗http://hsk.blcu.edu.cn/
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Error Type Number of errors Examples

B 9
最后 ， 要 关主{关关关注注注} 一些 关于 天气 预报
的 新闻 。 (Finally, pay attention to some
weather forecast news.)

CC 35

有 一 天 晚上 他 下 了 决定{决决决心心心} 向 富丽
堂皇 的 宫殿 里 走 ， 偷偷 的{地地地} 进入
宫内 。 (One night he decided to walk to the
magnificent palace, and sneaked in it secretly.)

CQ 30
在 上海 我 总是 住 NONE{在在在} 一家 特定
NONE{的的的} 酒店 。 (I always stay in the
same hotel in Shanghai.)

CD 21 我 很 喜欢 念{NONE}读 小说 . (I like to
read novels.)

CJ 35

. . . . . . 但是 同时 也 对 环境 问题{NONE}
日益 严重 造成 了{造造造成成成 了了了 日日日益益益 严严严重重重 的的的}
空气 污染 问题 。 (But on the meanwhile, it
also aggravated the environmental problem of
air pollution.)

Table 6.2: Examples of each error type. The underlined tokens are detected errors
that should be replaced with the tokens in braces.

BERT-fused performs better on other error types.
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Type
Detection Correction

Precision Recall F0.5 Precision Recall F0.5

BERT-encoder
B 80.0 55.6 73.5 80.0 55.6 73.5
CC 62.5 31.4 52.2 43.8 20.0 35.4
CQ 65.0 43.3 59.1 45.0 30.0 40.9
CD 58.3 28.6 48.3 50.0 28.6 43.5
CJ 56.5 42.9 53.1 4.3 2.9 3.9

BERT-fused
B 80.0 44.4 69.0 80.0 44.4 69.0
CC 61.9 42.9 56.9 38.1 22.9 33.6
CQ 69.0 63.3 67.8 44.8 46.7 45.2
CD 71.4 42.9 63.0 57.1 38.1 51.9
CJ 63.2 34.3 54.1 15.8 8.6 13.5

Table 6.3: Detection and correction performance of BERT-encoder and BERT-
fused models on each type of error.
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7 Conclusion

In this study, we incorporated a pre-trained model into an encoder-decoder model
using two methods on Chinese GEC tasks. The experimental results demonstrate
the usefulness of the BERT-based pre-trained model in the Chinese GEC task.
Additionally, our error type analysis showed that sentence-level errors remain to
be addressed.
For future consideration, a majority of the methods proposed in the NLPCC

2018 Grammatical Error Correction shared task are simply based on the methods
of English GEC; however, Chinese GEC has its own characteristics. For example,
spelling errors mainly arise from the similarity of the glyph and pronunciation,
and sentence-level errors often depend on word order. Hence, we plan to study and
improve the Chinese GEC system while considering these characteristics, using
methods such as incorporating glyph embeddings into the system (Meng et al.,
2019) or adopting the neural model whose positional embeddings can capture
word order more efficiently (Wang et al., 2020).
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